

# Selector+



# Contents

D4

Reference

| A          | General Information  |
|------------|----------------------|
| A1         | Introduction         |
| A2         | Properties           |
| A3         | Appearance           |
| A4         | Acoustics            |
| A5         | Fire Resistance      |
| A6         | Structure            |
| A7         | Wet Areas            |
| A8         | Design               |
|            |                      |
| В          | System Index         |
| B1         | Notes                |
| B2         | Walls                |
| В3         | Ceilings             |
| B4         | Other Systems        |
|            |                      |
| C          | Design Tables        |
| C1         | Frameless Walls      |
| C2         | Height Tables        |
| C3         | Charfactors          |
| C4         | Ceiling Span Tables  |
|            |                      |
| <b>C</b> 5 | Installation Details |
| D1         | General              |
| D2         | Walls                |
| D3         | Ceilings             |

# A | General Information

| A1 | Introduction            |
|----|-------------------------|
| A2 | Plasterboard Properties |
| A3 | Appearance              |
| A4 | Acoustics               |
| A5 | Fire Resistance         |
| A6 | Structure               |
| A7 | Wet Areas               |
| A8 | Design Considerations   |









# A | Contents

| A1 Introduction Applications | A5   Fire Resistance  Fire Resistance Levels |  |
|------------------------------|----------------------------------------------|--|
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
| A2   Plasterboard Properties |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              | A6   Structure                               |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
| A3   Appearance              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              | A7   Wet Areas                               |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
| A4   Acoustics               |                                              |  |
|                              |                                              |  |
|                              |                                              |  |
|                              | A8   Design Considerations                   |  |
|                              |                                              |  |
|                              |                                              |  |
|                              |                                              |  |

# Introduction

This document is a guide to the extensive range of Boral Plasterboard construction systems and assemblies. These products include acoustic and fire rated systems and have been designed to meet the needs and constraints of Australian conditions, while also providing space saving, dry, and lightweight constructions that are fast and economical to construct.

It has been compiled for specifiers, builders, contractors and Boral Plasterboard sales personnel. It consolidates fire rated and non fire rated plasterboard systems and incorporates more recent testing and advances in plasterboard technology.

# **Applications**

Applications possible with lightweight plasterboard construction include partitioning, acoustic and fire rated walls and ceilings, load bearing walls, security walls, chase walls, shaft walls, separating walls, duct enclosures and structure protecting systems.

The scope of fire rated systems includes systems with a fire resistance of up to four hours.

Ceiling systems are available to provide a horizontal fire separating barrier to roof plenums and between occupancies. For the usual fire resistance levels required it is often the lightest and most suitable solution for horizontal fire separation. Fire resistance for most of the horizontal systems represented in this manual are assessed for fire attack from below as is the usual requirement. Also listed are other horizontal systems which are assessed for fire attack from both above and below or from above only.

Refer to relevant Boral Plasterboard publications for further details.

# **Advantages**

Boral Plasterboard systems accommodate the heights/spans and pressures as listed by utilising appropriate stud depths, sizes/ gauges and centres. Plasterboard systems with the appropriate cavity insulation have been tested acoustically to achieve high sound insulation ratings. Fire rated systems of up to -/240/240 and 120/120/120 fire resistance level (FRL) as defined in the Building Code of Australia are readily achievable.

# **Building Systems Design** and Performance

As noted elsewhere in this manual, the performance ratings provided are based on laboratory tests carried out under ideal conditions. In-situ performance may experience some variation from the tested result. Whilst Boral Plasterboard confirms the performance ratings of the building systems listed in this manual, it is the responsibility of the appointed project consultant to ensure the building system specified is suitable for its intended in-service conditions.

# **Abbreviations Used in This Document**

| А                    | Boral Soundstop® plasterboard                                                                    |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|--|
| AM                   | Acoustic Mounting for furred or suspended systems                                                |  |  |
| AS                   | Australian Standard                                                                              |  |  |
| AWTA                 | Australian Wool Testing Authority                                                                |  |  |
| BCA                  | Building Code of Australia                                                                       |  |  |
| BFT                  | BHP fire test                                                                                    |  |  |
| BHP                  | BHP fire assessment                                                                              |  |  |
| BMT                  | Base metal thickness (mm), ie taken underneath any zinc or other coating                         |  |  |
| BRANZ                | Building Research Association of New Zealand                                                     |  |  |
| BS                   | Both sides                                                                                       |  |  |
| CAC                  | Ceiling Attenuation Class                                                                        |  |  |
| CCAA                 | Cement and Concrete Association of Australia                                                     |  |  |
| Cf                   | Charfactor, as used in fire rated timber wall design                                             |  |  |
| CH                   | C+H section galvanized steel Shaft Wall stud                                                     |  |  |
| CS                   | Lipped Rondo C section galvanized steel stud                                                     |  |  |
| CSIRO                | Commonwealth Scientific and Industrial Research Organization                                     |  |  |
| CT                   | Rondo C section galvanized steel track, 32mm flanges                                             |  |  |
| ctrs                 | Centres                                                                                          |  |  |
| dir                  | Fire resistance is directional                                                                   |  |  |
| $D_{n,c,w}$          | Weighted suspended ceiling normalised sound level difference (applies to over partition systems) |  |  |
| $D_{n,T,w} + C_{tr}$ | Weighted standardised sound level difference with spectrum adaptation term (field performance)   |  |  |
| DR                   | Galvanized steel Shaft Wall deflection head runner,<br>50mm and 75mm flanges                     |  |  |
| DT                   | Rondo C section galvanized steel deflection head track, 50mm flanges                             |  |  |
| EFH                  | Early Fire Hazard                                                                                |  |  |
| ES                   | E section galvanized steel Shaft Wall stud                                                       |  |  |
| ESA/M                | Exposed surface area of steel member (m²) divided by its mass per metre length (tonnes)          |  |  |
| F                    | Boral Firestop® plasterboard                                                                     |  |  |
| FAR                  | BRANZ fire assessment                                                                            |  |  |
| FCO                  | CSIRO fire assessment                                                                            |  |  |
| FPC                  | Fire Protective Covering                                                                         |  |  |
| FR                   | BRANZ fire test                                                                                  |  |  |
| FRFC                 | Face recessed furring channel                                                                    |  |  |
| FRL                  | Fire resistance level (structural adequacy/integrity/insulation)                                 |  |  |
| FSH                  | CSIRO horizontal fire test                                                                       |  |  |
| FSP                  | CSIRO pilot fire test                                                                            |  |  |
| FSV                  | CSIRO vertical fire test                                                                         |  |  |
| GHA                  | Graeme E Harding & Associates Pty Ltd                                                            |  |  |
| GW                   | Glasswool                                                                                        |  |  |
| HW                   | Hardwood                                                                                         |  |  |
| IIC                  | Impact Insulation Class (acoustic classification)                                                |  |  |
| Iso                  | Fire rating applies from lined side only                                                         |  |  |
| JR                   | Galvanized steel Shaft Wall runner, 25mm and 57mm flanges                                        |  |  |
| JS                   | Unlipped C section galvanized steel Shaft Wall jamb stud, 50mm and 75mm flanges                  |  |  |
| kN                   | Kilonewton (unit of force)                                                                       |  |  |
|                      |                                                                                                  |  |  |
| kPa                  | Kilopascal (1000 Pascals)                                                                        |  |  |

| $L_{n,T,w} + C_{I}$        | Floor weighted standardised impact sound pressure level with spectrum adaptation term (field)                  |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| $L_{n,w} + C_{I}$          | Floor weighted normalised impact sound pressure level with spectrum adaptation term (laboratory)               |
| MPa                        | Megapascal (unit of stress)                                                                                    |
| NA                         | Not Applicable                                                                                                 |
| NAL                        | National Acoustic Laboratories                                                                                 |
| NR                         | Not Required                                                                                                   |
| NRC                        | Noise Reduction Coefficient                                                                                    |
| NZS                        | New Zealand Standard                                                                                           |
| OS                         | One side                                                                                                       |
| Pa                         | Pascal (unit of pressure)                                                                                      |
| Pbd                        | Plasterboard                                                                                                   |
| pgs                        | Pages                                                                                                          |
| prev                       | Previous                                                                                                       |
| pl                         | Plate                                                                                                          |
| RC                         | Resilient Channel                                                                                              |
| RH                         | Relative Humidity                                                                                              |
| RISF                       | Resistance to the incipient spread of fire                                                                     |
| RMIT                       | Royal Melbourne Institute of Technology                                                                        |
| Riviii                     | Weighted sound reduction index (laboratory)                                                                    |
| - N <sub>W</sub>           | -                                                                                                              |
| $R_{\rm w}$ + $C_{\rm tr}$ | Weighted sound reduction index with spectrum adaptation term (laboratory)                                      |
| R' <sub>w</sub>            | Weighted apparent sound reduction index (field test)                                                           |
| Sht                        | Sheet                                                                                                          |
| SI                         | CSIRO fire test (Sponsored Investigation)                                                                      |
| Srf                        | (for masonry walls) Maximum Slenderness Ratio                                                                  |
| STC                        | Sound Transmission Class                                                                                       |
| std                        | Standard                                                                                                       |
| TE-FIRTO                   | Technical Evaluation of The Loss Prevention Council UK                                                         |
| TR                         | CSIRO fire test                                                                                                |
| U                          | Boral Unispan® plasterboard                                                                                    |
| U of C                     | University of California                                                                                       |
| W                          | Boral Wet Area plasterboard                                                                                    |
| WF                         | Boral Wetarea Firestop <sup>™</sup> plasterboard                                                               |
| WFIIC                      | Impact Insulation Class for walls by field testing (acoustic classification)                                   |
| WFRA                       | Warrington Fire Research (Aust) Pty Ltd                                                                        |
| WIIC                       | Impact Insulation Class for walls by laboratory testing (acoustic classification)                              |
| Wt                         | Weight                                                                                                         |
| WT                         | BHP fire test                                                                                                  |
| ххСНуу                     | Designation (for Rondo CH studs) in format of stud depth (mm), CH stud, BMT (mm x 100)                         |
| xxCSyy                     | Designation (for Rondo lipped C studs) in format of stud depth (mm), CS stud, BMT (mm x 100)                   |
| ххСТуу                     | Designation (for Rondo (32mm flange) standard track) in format of track depth (mm), CT track, BMT (mm x 100)   |
| xxDSyy                     | Designation for tophat stud sections in format of stud depth (mm), DS stud, BMT (mm x 100)                     |
| xxDTyy                     | Designation (for Rondo (50mm flange) deflection track) in format of track depth (mm), DT track, BMT (mm x 100) |
| xxGyy                      | Glasswool insulation in format of thickness (mm),<br>G (glasswool), density (kg/m³)                            |
| xxPyy                      | Polyester insulation (Tontine or equivalent) in format of thickness (mm), P, density (kg/m³)                   |

# **System Designation**

Systems are called up by their system number, eg TS1313. This new system numbering replaces the previous system identification which is also referenced in the System Index for convenience. Refer to Section B for an explanation of the new system identification.

# **Steel Component Designation**

Stud Sections are called up by depth and gauge, for example a 64mm deep C Stud of 0.75mm base metal thickness (BMT) is called up as a "64CS75". Track sections are similarly named. Unless otherwise noted the steel studs, associated tracks and other component types in the various sizes referred to in this selector are to be manufactured by Rondo Building Services Pty Ltd. These are distributed by Boral Plasterboard.



Steel C Stud (CS)

# **Quality Assurance**

Boral Plasterboard is a Quality Endorsed Company (Lic No 0400) conforming to AS/NZS ISO 9001:2008 `Quality management systems – Requirements'.

Boral plasterboard is machine made under a continuous process to the requirements of AS/NZS 2588:1998 `Gypsum plasterboard'.

# Certification

Boral Plasterboard systems have been assessed to meet the relevant requirements of Australian Standards and the Building Code of Australia.

Fire testing and assessment has been done to AS 1530.4:2005 `Methods for fire tests on building materials, components and structures - Fire resistance test of elements of construction? carried out by:

- CSIRO, Manufacturing and Infrastructure Technology, North Ryde, NSW
- Warrington Fire Research, Dandenong, Victoria
- BHP Research, Clayton, Victoria
- BRANZ, Judgeford, New Zealand.

Acoustic testing has been done to AS 1191:2002 `Acoustics - Method for laboratory measurement of airborne sound transmission insulation of building elements & AS/NZS 717.1:2004 `Acoustics - Rating of sound insulation in buildings and of building elements - Airborne sound insulation carried out by:

- Royal Melbourne Institute of Technology (RMIT), Victoria
- CSIRO, Highett, Victoria
- National Acoustic Laboratories, Chatswood, NSW.

Structural testing of wall systems has been carried out at the NATA registered laboratories of Boral Plasterboard at Port Melbourne. Structural appraisal of the systems was carried out by Wynton Stone Australia Pty Ltd and Taylor Thomson Whitting of Melbourne.

Fire, acoustic and structural test reports and opinions can be made available on request from all Boral Plasterboard Sales Offices.

The systems published in this document and their certification are valid only when constructed in accordance with Boral Plasterboard details and using the stated Boral plasterboard manufactured in Australia by Boral Australian Gypsum Limited, ie Boral Standard Core, Flexiboard®, Unispan®, Soundstop®, Firestop®, Wet Area Board™, Wet Area Firestop™ and Shaftliner™. Fastening should be of the same type and at centres no greater than detailed for particular systems.

# **Environmental Issues**

Boral Plasterboard is manufactured from naturally occurring Gypsum mined at Kevin in South Australia by Gypsum Resources Australia Pty Ltd. The mine has a remediation plan in place which will result in a gently undulating landscape using the overburden previously stripped and will allow re-growth of native local vegetation, mostly salt bush.

The paper liner is manufactured from recycled pulp with almost all of it coming from used paper and cardboard packaging.

In Australia, Boral Plasterboard has developed an environmental policy which targets the recycling of its plaster products. The Standard Core plasterboard products (which is the majority of production) can all be recycled either into new plasterboard or soil conditioner.

The company can also accept clean plasterboard off-cuts from some building sites to recycle for use in new plaster products.

For further information contact a local Boral Plasterboard office.

# Safety and First Aid

Although there are no health hazards known in the normal use and application of plasterboard, observe the following precautions:

- Avoid creating dust when handling plasterboard or mixing plasterboard products
- Reduce sanding by passing a wet sponge over the edges of the finished joints after trowelling
- If dry sanding is necessary and dust is created, provide adequate ventilation, wear eye protection and a disposable respiratory mask conforming to AS/NZS 1716:1994
   `Respiratory protective devices'
- Keep all construction materials and tools out of reach of children
- Compound or dust in the eyes Wash the eyes thoroughly with water
- Compound or dust on skin Wash the skin with soap and water
- · Dust inhalation Move to fresh air area
- Ingestion of compounds or dust Drink plenty of water
- Material Safety Data Sheets for Boral Plasterboard products are available on Boral website www.boral.com.au or through Boral TecASSIST® 1800 811 222.

# Plasterboard Properties

The following is information on various properties and aspects of plasterboard that the designer may find useful in specifying plasterboard systems.

# **Board Weights**

The weights for various board types produced by Boral Plasterboard are provided in the following table:

#### **Boral Plasterboard Weights**

| Plasterboard Type  | Thickness (mm) | Mass (kg/m²) |
|--------------------|----------------|--------------|
| Flexiboard®        | 6              | 4.1          |
| Std Core           | 10<br>13       | 6.8<br>8.6   |
| Unispan®           | 10             | 7.2          |
| Wet Area Board™    | 10<br>13       | 7.4<br>9.4   |
| Firestop®          | 13<br>16       | 10.5<br>13   |
| Wet Area Firestop™ | 13<br>16       | 10.5<br>13   |
| Soundstop®         | 10<br>13       | 8.2<br>11.2  |
| Foil-backed board  | 10<br>13       | 6.8<br>8.6   |
| Shaftliner™        | 25             | 20.5         |
| Impactstop™        | 13             | 11.3         |

# **Embodied Energy**

The Process Energy Requirement (PER) of plasterboard is 4.4MJ/kg of plasterboard. This PER refers to the amount of energy required in the manufacture of the plasterboard including the mining of the gypsum, shipping the gypsum to the plant, and the production of the paper liner. The energy used in the transport of the plasterboard from the manufacturing plant to the distribution outlets or building site is not included in the PER figure.

# **Thermal Resistance**

Commonly, plasterboard is fixed to framework, creating a cavity construction. Thus, thermal resistance ratings (R-values) of plasterboard systems can be easily upgraded through addition of bulk or reflective insulation.

The R-values of various plasterboard products produced by Boral are provided in the following table:

#### Thermal Resistance

| Plasterboard Product | R-value                      |
|----------------------|------------------------------|
| 10mm Std Core        | $0.056m^2K/W \pm 10\%$       |
| 13mm Std Core        | 0.073m <sup>2</sup> K/W ±10% |
| 13mm Firestop®       | 0.061m <sup>2</sup> K/W ±10% |
| 16mm Firestop®       | 0.074m <sup>2</sup> K/W ±10% |
| 25mm Shaftliner™     | 0.112m <sup>2</sup> K/W ±10% |

Calculation of the above R-values is from test data of thermal conductivity as reported in BRANZ Report No EC0713, 22/10/2003. Thermal resistance ratings of various external wall systems are shown in the System Index.

# **Specific Heat Capacity**

The Specific Heat Capacity is a measure of a material's capacity to store heat, the higher the Specific Heat Capacity the greater the capacity to store heat.

#### Specific Heat

| Pbd Product      | Specific Heat Capacity | Basis                                 |
|------------------|------------------------|---------------------------------------|
| 10mm Std Core    | 1028J/kgK ±10%         | BRANZ Report No<br>EC0713/2, 22/10/03 |
| 13mm Firestop®   | 960J/kgK ±10%          | BRANZ Report No<br>EC0713/2, 22/10/03 |
| 25mm Shaftliner™ | 979J/kgK ±10%          | BRANZ Report No<br>EC0713/2, 22/10/03 |

A2. 1 BORAL PLASTERBOARD | February 2009

# **Temperature Effects**

Thermal co-efficient of linear expansion =  $16.2 \times 10^{-6} \text{mm/(mm}^{\circ}\text{C})$  over the range  $4^{\circ}\text{C}$  to  $38^{\circ}\text{C}$ .

Boral Plasterboard does not recommend the use of radiant heating systems continuously subjecting plasterboard ceilings to temperatures in excess of 42°C.

# **Moisture Effects**

The hygrometric co-efficient of linear expansion of plasterboard is 7.2 x  $10^{-6}$ mm/(mm% RH) over the range 5% to 90% relative humidity.

As exposure to moisture may affect performance of plasterboard linings, it is recommended that plasterboard is installed in well ventilated areas protected from moisture penetration.

Building designers should be aware that some types of bulk insulation tend to absorb and retain the moisture against the face of plasterboard.

# **Impact Resistance**

Impacts on walls come in three basic forms; soft body, abrasive and hard body. Each of these can affect the wall lining in different ways and consequently affect the choice of the lining system.

## **Soft Body Impact**

Soft body impact is the type of impact one would associate with people hitting walls with their shoulder or hip. Soft body impact testing is a requirement under the Building Code of Australia (BCA) for certain types of wall systems.

Up to the point of breaking the lining, soft body impacts rarely leave any visible marks on the face of the wall, unlike hard body and abrasive impacts.

Where required, Boral Plasterboard systems comply with the soft body impact resistance provisions of the BCA.

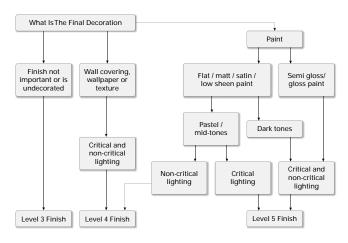
## Abrasive Impact

This impact occurs when an object is scraped along the face of the wall and usually is seen by marks in the paint covering the wall lining. Resistance against abrasion is more a function of the surface coating over the face of the wall lining, than the lining itself. However, the harder the lining material is, the better it will resist determined scratching associated with vandalism.

With a glancing impact, where a hard body object strikes the wall at an angle of less than 90 degrees, the damage will often be a combination of abrasion and denting.

# **Hard Body Impact**

These impacts result in dents or gouges and sometimes penetration of the wall lining. Examples of hard body impacts would include kicks and hits with trolleys or hockey sticks. The BCA specifies a static test measuring resistance to indentation of wall linings (Specification C1.8.6), but no hard body impact requirements. All plasterboard products produced by Boral Plasterboard meet this surface indentation criteria.


When considering what solution to use in a particular situation, it is important to look at the lifecycle costs for the alternatives available. Lifecycle costs include the up front capital cost to build the wall and the costs of maintaining the wall linings that are incurred over the life of the building. While some alternative systems may have lower maintenance costs in service, their up front installation costs may be quite high and plasterboard may provide a more cost effective solution.

# **A3 Appearance**

# Levels of Finish

To quantify the quality of finish desired, AS/NZS 2589:2007 `Gypsum Linings - Application and Finishing' applies a system known as `levels of finish'. There are 3 levels of finish (3-5), with Level 4 being the default for residential construction.

Since each level of finish requires specific tolerances for frame alignment and plasterboard fixing and finishing, it is essential that the level of finish required is determined at the design stage. The desired level of finish is achievable only when these requirements are met throughout the various stages of construction.



# **Influences**

There are many factors in modern building design that influence the overall appearance of a wall or ceiling.

Modern features such as lower unbroken ceiling areas across adjoining rooms, large open living areas, and importantly, larger windows with greater use of natural light from skylights and mirrored walls etc often create conditions in which it is difficult to achieve the desired level of finish.

Consumers are often not aware of the difficulties involved in achieving their expectations, particularly when some design conditions highlight rather than camouflage surface conditions. It is therefore very important that the consumer's expected standard of finish matches the level of finish the tradesperson is capable of achieving given the particular design features of the project.

# **Glancing Light**

Glancing light is the light that shines across the surface of a wall or ceiling rather than directly on it. When considering the type of finish required it is important to understand how the overall appearance is likely to be affected by glancing light in a particular situation.

Refer Boral Plasterboard publication `Lighting and Decoration – The Facts' for guidance on good lighting and decoration practices.

# **Gloss/Sheen Paints**

Full gloss paint finish is not recommended on plasterboard walls or ceilings. When semi-gloss paint is to be used in large open rooms or vast areas with uncurtained windows, the highest level of finish (Level 5) is essential.

Where gloss or impervious sheen paint finishes are desired for purely functional reasons eg, kitchens, bathrooms etc, some loss of appearance should be accepted.

## Paint Discolouration

Whilst a plasterboard installation may conform to the relevant Australian Standards, discolouration of the joints may occur in colder climate conditions/regions ie ACT, Tasmania and Alpine Regions, due to effects of condensation. Mould growth, contaminated paint, staining and smoke affected joints are among contributing factors of paint discolouration and visible joints in subtropical and tropical regions.

Refer to Boral Plasterboard publication `Lighting and Decoration - The Facts' for good design practices aimed at avoiding paint discoloration due to the above causes.

This page left blank intentionally.

# Acoustics

# Introduction

All acoustic ratings listed in Section B have been verified by acoustical consultants Graeme E Harding & Associates and are covered by opinion Sheet No 104 (copy attached at the end of this Section). A list of tested systems can be provided on request.

Building acoustics is the science of controlling noise in buildings, including the minimisation of noise transmission from one space to another and the control of noise levels and characteristics within a space. The term `building acoustics' embraces sound insulation and sound absorption. The two functions are quite distinct and should not be confused.

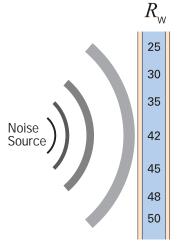
Noise has been defined as sound which is undesired by the recipient, but it is very subjective and depends on the reactions of the individual. However, when a noise is troublesome it can reduce comfort and efficiency and, if a person is subjected to it for long enough periods, it can result in physical discomfort or mental distress. Ideally, the sound insulation requirements for a building should be considered at the design stage and take into account both internal and external sound transmission. Remedial measures after occupation can be expensive and inconvenient.

# **Sound Insulation**

Any wall or floor/ceiling partition system that separates one sole-occupancy unit from another, must comply with the acoustic provisions as set out in the Building Code of Australia (BCA).

Walls or floor/ceilings that separate one room from another within the dwelling fall outside the scope of the BCA. However, an owner may wish to create quiet zones within the home by selecting internal wall or ceiling systems that have improved acoustic isolation properties.

There are two types of noise transfer through partitions, airborne transfer, and structure borne transfer. Both may need to be considered in order to achieve the desired result.


#### **Airborne Noise**

## Weighted Sound Reduction Index (Rw)

Noise sources such as voices, television sets/home theatre and musical instruments, generate noise in the air in one room and this noise passes through the partition and into the room on the other side. This is known as airborne noise.

The BCA has adopted the Weighted Sound Reduction Index  $(R_{\rm w})$  as a measure of sound isolating properties of building elements. A partition with a high  $R_w$  rating isolates sound better than a partition with a low  $R_{\rm w}$  rating. If two partitions are compared subjectively and one has an  $R_{w}$  which is 10 rating points higher, then the noise passing through the better wall will be about half the loudness of the lesser wall. The  $R_{w}$  ratings are obtained from tests carried out in certified laboratories, under controlled conditions.

Determination of  $R_{w}$  is defined in AS/NZS ISO 717.1 Acoustics - Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation.



Normal speech can be heard easily

Some speech will be quite intelligible

Possible to understand some normal speech

Speech will be audible but most normal conversation will not be intelligible

Must strain to hear normal speech

Only some loud speech will be audible but unintelligible

Loud speech cannot be heard

Typical  $R_{\rm w}$  Ratings

# » Sound Insulation

#### $R_{\rm w}$ vs STC

In 2000, the BCA replaced the Sound Transmission Class (STC) rating with  $R_{\rm w}$ .

For most partitions STC =  $R_{\rm w'}$  however the rating between the two can vary by as much as 3dB for the same partition. This is due to the different rules that apply when determining the two sets of numbers.

## Spectrum Adaptation Term (C<sub>17</sub>)

The  $R_{\rm w}$  alone is not a good indicator of how well the partition isolates low frequency (bass) sounds. To improve the low frequency performance of wall & floor/ceiling partitions, the BCA requires specific walls to meet an  $R_{\rm w}$  +  $C_{\rm tr}$  criterion.

When the  $C_{\rm tr}$  is combined with the  $R_{\rm w}$  the result is a single number index which provides a more reliable indicator of the ability of the partition to isolate noise containing low frequency components.

Two partitions with the same  $R_{\rm w}$  +  $C_{\rm tr}$  value will have similar low frequency isolation properties regardless if their respective Ctr terms are vastly different. The higher the  $R_{\rm w}$  +  $C_{\rm tr}$  value for a wall or ceiling partition the better the sound insulation performance, particularly in the low frequencies.

The  $C_{tr}$  typically ranges between -1dB to -15dB and is calculated from the airborne performance of a partition in the range of frequency bands measured. Determination of  $C_{tr}$  is defined in AS/NZS ISO 717.1 Acoustics — Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation.

#### Structure-borne Noise

When a building element is directly, or indirectly, impacted or vibrated then some of the energy passes through the partition and is reradiated as noise to the room on the other side. This is called structure borne noise or impact noise.

#### Impact Sound Isolation for Walls

The most common sources of structure borne noise through walls are:

- · Cupboard doors, fixed to party walls, being closed
- · Kitchen appliances being used on benches touching walls
- · Plumbing fittings, particularly taps, being connected to walls
- · Light switches being turned on and off
- Dishwashers, washing machines, clothes dryers, etc touching party walls.

The BCA has adopted the approach that for walls requiring impact sound performance then the construction must be of 'discontinuous construction'. The BCA defines discontinuous construction as a wall having a minimum 20mm cavity between two separate leaves, and:

- For masonry, where wall ties are required to connect leaves, the ties are of the resilient type
- For other than masonry, there is no mechanical linkage between leaves except at the periphery.

Boral Plasterboard wall systems qualifying as `discontinuous construction' include:

- · Twin stud wall systems, both in timber and steel
- IntRwall® systems (which include a separate steel stud at least to one side)
- Partiwall<sup>®</sup> systems (with aligned floors on each side of separate dwellings)
- Masonry wall systems to Detail E & F only (ref Section B)

The BCA and the `Guide to the BCA' states that for Class 1 Buildings and Class 2 to 9 Buildings respectively a staggered stud wall is not deemed to be discontinuous construction.

# » Sound Insulation

#### Impact Sound Isolation for Floors

The most common source of structure borne noise to the occupants below is footsteps.

In addition to a minimum airborne sound isolation performance  $(R_{tt} + C_{tr})$ , the BCA has introduced a requirement for an impact rating of floors between sole occupancy units of Class 2 or 3 Buildings expressed as  $L_{n,w} + C_1$ .

The L<sub>n,w</sub> (Weighted normalised impact sound pressure level) is measured in very controlled conditions in a laboratory and indicates how much sound reaches the receiving room from a standard tapping machine. The lower the number the better the performance of the floor at isolating impact sounds.

The Spectrum adaptation term (C<sub>1</sub>) is used to modify L<sub>n,w</sub> to more closely simulate foot step noise.

L<sub>n.w</sub> and C<sub>1</sub> are defined in AS ISO 717-2 Acoustics – Rating of sound insulation in buildings and of building elements – Impact sound insulation.

# **Difference Between Laboratory and Field Test Results**

When identical partitions are tested on site it is often found that the site rating is lower than the  $R_{w}$  (laboratory performance). This reduction in performance can be due to:

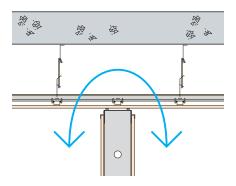
- flanking paths, ie noise passing through adjacent parts of the building
- · incorrect installation procedures, or
- non-ideal measurement conditions. For instance, small room sizes may affect accurate measurements in particular frequencies.

On-site field testing is now allowed as a verification method to comply with the provisions of the BCA.

The on-site rating measurement under the BCA is the  $D_{nTw}$ (Weighted standardised level difference) and is, technically, slightly different to the laboratory  $R_{\rm w}$  assessment. The BCA allows a 5dB concession between the laboratory performance and the field performance to allow for flanking and the technical difference in units. Therefore, the  $D_{nTw} + C_{tr}$  may be up to 5dB less than the  $R_w + C_{tr}$ .

For the transmission of impact generated sound through floors, the BCA does not allow any concession from the laboratory performance to the field performance. Therefore, the on site performance requirement,  $L'_{nT,w}$  (Weighted standardised impact sound pressure level) +  $C_{l'}$  cannot exceed the  $L_{n,w}$  +  $C_{l'}$ .

# Sound Insulation Rating of Services


The BCA requires ducts, soil and waste pipes and water supply pipes located in a party wall or floor cavity to be acoustically separated by a construction with a minimum  $R_w + C_{tr}$  rating. Supplementary to the airborne rating, the BCA requires that water supply pipes must only be installed in the cavity of discontinuous construction.

To achieve the sound insulation requirements of the BCA, one of the options for soil and waste pipe treatment includes acoustic lagging of the pipes which typically comprises a loaded vinyl isolated from the pipe with foam or fibreglass. It is important that the lagging and pipe are not in contact with ceilings, walls or supports and the pipe mounts and supports are not contact the surrounding bulkheads or risers.

# » Sound Insulation

## **Over-partition Noise Rating**

Sound can easily travel through an exposed grid or flush suspended ceiling and over the top of a partition where it abuts the underside of a suspended ceiling. This is a common source of sound transmission particularly where the ceiling is porous to sound.



In this case the sound rating of the ceiling element is stated as the  $D_{n,c,w}$  – Weighted Suspended-ceiling Normalised Level Difference. The rating formerly used was CAC (Ceiling Attenuation Class).

Where sound insulation is important, partitions should, wherever possible, continue through the ceiling to the structural soffit and be sealed at their perimeter.

Determination of  $D_{n,c,w}$  is defined in AS/NZS 2499:2000 Acoustics – Measurements of sound insulation in buildings and of building elements – Laboratory measurement of room-to-room airborne sound insulation of a suspended ceiling with a plenum above it.

# **Sound Absorption Rating**

The level of sound absorbency for a material is stated as the 'Weighted Sound Absorption Coefficient'  $(\alpha_w)$ .

The  $\alpha_{\rm w}$  value is derived as a result of acoustic testing on a material and determined by shifting a reference curve over the measured values as specified in the Standard. The Weighted Sound Absorption Coefficient  $\alpha_{\rm w}$  is defined as the value of the shifted reference curve at 500Hz.

The rating formerly used was NRC (Noise Reduction Coefficient).

Determination of  $\alpha_{\rm w}$  is defined in AS ISO 11654-2002 Acoustics – Rating of sound absorption – Materials and systems.

# **Sound Isolation Criteria**

The Building Code of Australia specifies minimum standards for sound isolation between attached dwellings. Experience has shown, however, that achieving these minimum standards is not always sufficient to meet the expectations of the building occupants. In view of this it is recommended that architects, developers, builders, etc consider a higher degree of sound insulation, commensurate with the expectations of the end user. To this end the Association of Australian Acoustical Consultants (AAAC) developed the acoustical `Star Rating´ system that ranks the acoustical quality of apartments and townhouses. The rating system covers noises associated with intertenancy activities eg, voices and home theatre, internal building services and appliances eg, air conditioning, lifts, water supply systems and external noise intrusion eg, road, rail, and air traffic.

The Acoustical Star Rating guidelines are available on the AAAC website www.aaac.org.au

# **Construction Changes and Substitutions**

Changes in construction and substitution of different materials can increase or decrease the acoustical isolation of wall and floor/ceiling systems. Some variations may provide better sound isolation, while others may result in the acoustical isolation falling below the specification or code requirements. The following comments apply to wall systems unless otherwise noted.

#### Studs

- Except for staggered stud and twin stud wall systems, substituting timber studs in place of steel studs generally results in a significant decrease in sound isolation
- Increasing the thickness of steel studs from 0.55 BMT to 0.75 BMT or 1.15 BMT will decrease sound isolation
- Decreasing the stud spacing will decrease the sound isolation.

#### **Plasterboard**

- Substituting types of plasterboard of the same thickness, say
  Wet Area Board™ for Standard Core, will usually result in a
  change in R<sub>w</sub> of less than 1dB for most systems, although a
  greater reduction may occur with separating wall systems
  such as Partiwall®
- Substituting with thinner plasterboard may result in a substantial reduction in sound isolation.

#### Insulation

- Thinner insulation will decrease the sound isolation
- Thicker insulation may increase the sound isolation
- The following insulation will typically have a similar performance:
  - Rockwool blanket or batts, 50mm thick and not less than 30kg/m³ density
  - Glass wool blanket or batts, 50mm thick and not less than 10kg/m³ density
  - Acoustic grade polyester fibre blanket or batts, 50mm thick and not less than 14kg/m³ density.

#### **Fixings**

- Using more screws or nails than specified may reduce the sound isolation
- Using cornice cement or other methods of laminating plasterboard, other than nailing or screw fixing, will reduce the sound isolation.

# **Perimeter Acoustical Sealing**

It should be noted that as the sound isolation requirement of a partition increases, the control of flanking paths becomes more critical. Consequently, the perimeter sealing requirements for a low sound rating wall, such as  $R_{\rm w}$ =30dB, are much lower than for a high sound rating wall, such as  $R_{\rm w}$ =60dB. It cannot be over emphasised that for high performance walls, the sealing of each face must be virtually airtight.

For a sealant to be effective at controlling noise passing through gaps, it must have the following properties:

- · Good flexibility, elastic set
- Low hardness
- Excellent adhesion, usually to concrete, timber, plaster and galvanised steel
- Minimal shrinkage (less than 5%)
- Density greater than 800kg/m³
- Fire rated (where required).

All of the above properties must be maintained over the useful life of the building.

Some silicone sealants and some acrylic latex sealants are examples of suitable sealants.

Reference should be made to the manufacturer to ensure the particular type or grade of sealant is suitable for the purpose.

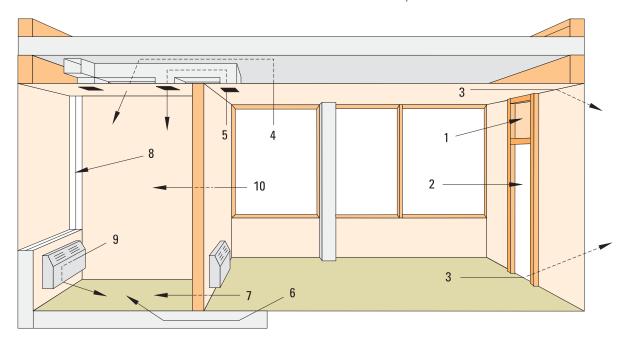
#### Note

The use of expanding foam sealants is not acceptable.

#### Noise Flanking

Noise flanking can significantly reduce the perceived isolation of a wall or floor/ceiling system and should therefore be given careful consideration.

Typical flanking paths for a wall include:


- Through ceilings and the above ceiling cavity
- Through floors and the below floor crawl space
- · Through windows
- Through light switches, or GPO's, located in the wall
- Through shared building elements such as floor boards, floor joists, continuous plasterboard walls, continuous plasterboard ceilings and even continuous concrete walls and floors
- · Through any sound leaks
- Through the perimeter joints between the wall and the floor, or the wall and the ceiling (or underside of the floor slab) or wall junctions.

Typical flanking paths for a floor/ceiling system include:

- Through windows
- · Through light fittings or air conditioning fixtures in the ceiling
- Through shared building elements, such as external walls
- Through any sound leaks
- Through the perimeter joints between the floor and walls, or between the ceiling and wall.

#### Diagram Key

- 1 Lightweight panels above doors
- 2 Doors
- 3 Air leaks through gaps, cracks or holes
- 4 Sound transmission via suspended ceilings/partitions
- 5 Common ventilation system without sound absorbent treatment
- 6 Common floor duct
- 7 Electrical outlets and service pipes
- 8 Lightweight mullions or mullion/partition closers
- 9 Continuous runs of ducting
- 10 Partition performance



#### **Acoustic Performance On Site**

Acoustic ratings stated in this manual have been achieved by testing or calculated based on controlled laboratory conditions. To reproduce the stated performance in the field, attention to detail in the design and construction of the partition/ceiling and its associated structure is of prime importance. Even the most basic principles, if ignored, can significantly downgrade the sound insulation performance.

Boral Plasterboard cannot guarantee the field performance matching laboratory test results or estimated ratings. However, with careful attention during erection of the wall or ceiling, correct installation to specification and proper caulking/sealing, the assembly should produce a field performance close to and comparable with tested or estimated values.

Apart from installation procedures, workmanship and caulking the following factors can also affect the acoustic performance on site.

#### Doors

Hollow core and even solid doors generally provide unsatisfactory sound insulation between rooms. Doors can also provide direct air leaks between rooms thus having a detrimental effect on the overall sound insulation of the partition in which they are inserted. The higher the insulation of the partition, the worse is the effect of doors.

Where sound insulation is important, specialised heavyweight doors or, preferably, two doors separated by an absorbent lined airspace or lobby should be used. Because air leakage largely determines the sound insulation of a single door, consideration must be given to providing airtight seals between the door and the frame and at the threshold.

The joints between the door frame and partition structure should also be sealed. The door seal must be compatible with the fire resistance of a door if required.

# Lightweight Panels Above Doors

These are often incorporated for aesthetic reasons, however, the performance of a partition with high sound insulation can be considerably downgraded by lightweight panels.

#### Air Paths Through Gaps, Cracks or Holes

Gaps, cracks or openings, however small, readily conduct airborne sounds and can considerably reduce the sound insulation of a construction.

#### **Appliances**

In cases where sound insulation is important, noise producing fixtures or appliances such as water closets, cisterns, water storage tanks, sluices, dishwashers, washing machines and pumps should be repositioned or isolated from the structure with resilient mountings and flexible service leads and connections. Where fittings are duplicated on opposite sides of partitions, such as back to back baths or unit shower cubicles, the partition wall should be continuous between the fittings, otherwise a path for direct sound transmission will exist.

# Electrical Outlets and Service Pipe Penetrations

Penetrations in party walls should be avoided where sound insulation is important. This includes recessed fittings or ducts such as skirting heating, electrical or telephone wiring trunking, light fittings, intercommunication systems and alarms, medical and laboratory gas outlets. Plumbing connections between fittings or appliances on opposite sides of a partition offer a path for transmission of sound and should be sealed. If possible introduce discontinuity in the pipe work between fittings, such as a flexible connection within or on the face of a partition.

The acoustic performance may be downgraded where penetrations or services exist within the wall unless extreme care is taken at the detailing and construction stages. This is especially likely with acoustical bridging caused by plumbing or electrical services or by structural members including flooring.

Where penetrations are not avoidable in party walls, electrical outlets, switch boxes and similar penetrations should not be placed back-to-back. Seal backs and sides of boxes and the perimeter of all penetrations with acoustic sealant. Preferably, sound-rated electrical outlets and switches should be used, or outlets and switches should be surface mounted on soundrated walls.

The BCA states that electrical outlets must be offset from each other in timber or steel framed walls not less than 300mm.

# Penetrations in Linings Separating Soil and Waste Pipes

The acoustic ratings for soil and waste pipes provided in Section B4 apply when the plasterboard linings are unpenetrated. In some cases, penetrations will downgrade the stated acoustic performance.

In wet areas, penetrations in ceiling linings typically include recessed lighting (eg down lights), together with a return air, air conditioning, or toilet exhaust grille.

The effect of penetrations differs between the unlagged and lagged and clad pipes. Lagging and cladding has the benefit of reducing the noise emitted from the pipe itself.

In the following tables, penetrations due to recessed adjustable low voltage gimble downlights and a toilet exhaust grille are used by way of example for the corresponding total area of opening in the wall or ceiling. To determine the estimated acoustic rating with penetrations, choose the appropriate range that the system without penetrations falls within and scroll down to the rating for the corresponding total opening area.

#### **Pipes Unlagged**

The following table provides the revised  $R_{\rm w}$  or  $R_{\rm w}$  +  $C_{\rm tr}$  rating due to penetrations in the wall or ceiling partition systems listed on page B4.1. The ratings apply for systems with and without insulation.

Unlagged Soil and Waste Pipe Systems -Estimated Acoustic Rating Due to Penetrations in the Plasterboard Lining

| Total Area of<br>Opening in Wall     | $R_{\rm w}/R_{\rm w}$ + C <sub>tr</sub> of wall or ceiling partition system (with or without insulation) |         |         |         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|---------|---------|---------|
| or Ceiling mm <sup>2</sup>           | 25 - 29                                                                                                  | 30 - 34 | 35 - 39 | 40 - 45 |
| 300 (1 downlight)                    | 25 - 29                                                                                                  | 30 - 33 | 34 - 38 | 38 - 41 |
| 600 (2 downlights)                   | 25 - 29                                                                                                  | 30 - 33 | 34 - 36 | 37 - 39 |
| 1200 (4 downlights)                  | 25 - 28                                                                                                  | 29 - 32 | 33 - 35 | 35 - 36 |
| 10,000 (small toilet exhaust grille) | 23 - 25                                                                                                  | 26 - 27 | 27 - 28 | 27 - 28 |

The following is an example on the use of the table above:

System specified: WP20 (ref pg B4.1)

Acoustic rating:  $R_{\rm w}$ =31dB (without insulation)

Penetration: 4 downlights

Estimated acoustic rating from table above:

 $1: R_{W} = 29 - 32dB$ 

#### Pipes Lagged and Clad

The following table provides the revised  $R_{\rm w}$  or  $R_{\rm w}$  +  $C_{\rm tr}$  rating due to penetrations in the wall or ceiling partition systems listed on page B4.2. The ratings apply for systems with and without insulation and assume that lagging and cladding of the pipe improves the effective  $R_{\rm w}$  or  $R_{\rm w}$  +  $C_{\rm tr}$  by 10dB.

Lagged and Clad Soil and Waste Pipe Systems -Estimated Acoustic Rating Due to Penetrations in the Plasterboard Lining

| Total Area of<br>Opening in Wall     | $R_{\rm w}/R_{\rm w}$ + $C_{\rm tr}$ of wall or ceiling partition system (with or without insulation) |         |         |         |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|---------|---------|---------|
| or Ceiling mm <sup>2</sup>           | 30 - 34                                                                                               | 35 - 39 | 40 - 44 | 45 - 49 |
| 300 (1 downlight)                    | 30 - 34                                                                                               | 35 - 39 | 40 - 43 | 44 - 48 |
| 600 (2 downlights)                   | 30 - 34                                                                                               | 35 - 39 | 40 - 43 | 44 - 46 |
| 1200 (4 downlights)                  | 30 - 34                                                                                               | 35 - 38 | 39 - 42 | 43 - 45 |
| 10,000 (small toilet exhaust grille) | 29 - 33                                                                                               | 33 - 35 | 36 - 37 | 37 - 38 |

The following is an example on the use of the table above:

System specified: WPL13A (ref pg B4.2)

Acoustic rating:  $R_{\rm w}$  +  $C_{\rm tr}$  = 40dB (with insulation) Penetration: small toilet exhaust grille

Estimated acoustic rating from table above:

 $R_{\rm w} + C_{\rm tr} = 36 - 37 dB$ 

# **Acoustic Opinion**



## Graeme E. Harding & Associates

Consultants in Acoustics, Noise and Vibration A Division of Heggies Pty Ltd ABN 29 001 584 612

Graeme E. Harding F.A.A.S., M.A.S.A., M.I.I.A.V., M.AIRAH, Principal Gustaf Reutersward B.E.(Mech) (Hons), M.A.A.S., Office Manager James B. Fowler B.E., M.A.A.S., Senior Consultant Graeme R. Campbell B.App.Sc., M.A.A.S., Senior Consultant Jim Antonopoulos B.App.Sc., M.A.A.S., Senior Consultant Dianne L. Williams B.A.(Hons), B.App.Sc., M.A.A.S., Consultant

Suite 6, 131 Bulleen Road BALWYN NORTH Victoria 3104 Australia Telephone: +61 3 9249 9400 Facsimile: +61 3 9249 9499 www.heggies.com

SAVE DATE: 2007-03-16 11:09 2007 March 16 TEXT: 40-1242 BORAL104C OPINION 20070316.DOC SHEET NO. 104 – REVISION C Page 1 of 1

#### ACOUSTICAL OPINION -BORAL AUSTRALIAN GYPSUM LIMITED PARTITION WALLS, FLOORS AND CEILINGS

Systems included in the Boral Selector - Plasterboard Systems (PB101, March 2007), which are not laboratory tested systems, have an acoustic rating which has been determined by opinion by Graeme E. Harding & Associates.

The acoustic rating was based either on the ratings of similar tested constructions from various sources, or by calculation using predictive models, or by a combination of both where appropriate.

#### Notes:

 The R<sub>W</sub> (Weighted Sound Reduction Index) is a single number index used to rate the sound isolation of a partition for noises which do not have significant low frequency components, such as speech. The R<sub>W</sub> value given is the expected performance of a building element in a laboratory that tests to AS1191-2002 "Acoustics - Method for Laboratory Measurement of the Airborne Sound Transmission Loss of Building Partitions", and determined according to the procedure in AS/NZS ISO 717.1:2004 "Acoustics - Rating of sound insulation in buildings and of building elements - Airborne sound insulation"

The expected tolerance of opinions is  $\pm 2dB$  for the  $R_W$ . This allows for variations in the test method, the difference between laboratories and the accuracy of the estimating techniques. The rating obtained on a building site, called the Weighted Apparent Sound Reduction Index ( $R'_W$ ), may differ from the laboratory result.

2. The  $R_W + C_T$  is a single number index that provides a more reliable indicator of the ability of the partition to isolate noise containing significant low frequency components (such as traffic noise and home theater sound) than the  $R_W$ . In several countries the  $R_W$  combined with the  $C_{tr}$  (an adaptation term) is simplified to a single number rating, the  $R_{A,2}$ . The  $R_W + C_{tr}$  value given is the expected performance of a building element in a laboratory that tests to AS1191-2002 "Acoustics - Method for Laboratory Measurement of the Airborne Sound Transmission Loss of Building Partitions", and determined according to the procedure in AS/NZS ISO 717.1:2004 "Acoustics - Rating of sound insulation in buildings and of building elements - Airborne sound insulation".

The expected tolerance of opinions is  $\pm 3dB$  for the  $R_W+Ctr$ . This allows for variations in the test method, the difference between laboratories and the accuracy of the estimating techniques. The rating obtained on a building site may differ from the laboratory result.

3. The  $L_{n,w} + C_I$  is a single number index used to rate the sound isolation of a floor/ceiling partition against footfall noise, particularly high healed, hard surfaced shoes. The  $L_{n,w} + C_I$  value is the expected performance in a laboratory that tests to ISO 140/6-1998 "Acoustics - Measurement of Sound Insulation of Buildings and of Building Elements - Part 6: Laboratory Measurements of Impact Insulation of Floors" and determined according to the procedure in AS ISO 717.2-2004 "Acoustics - Rating of sound insulation in buildings and of building elements - Impact sound insulation".

The expected tolerance of opinions is  $\pm 3dB$  for the  $L_{n,w}+C_{l}$ . The expected tolerance allows for variations due to the test method, differences between laboratories, and accuracy of the estimate. The  $L_{n,w}+C_{l}$  rating does not allow for the amount of low frequency noise to the room below the partition when a person walks on the floor above. This low frequency noise can be significant with lightweight floor/ceiling systems. The field rating may differ significantly from the laboratory result

Prepared by:

Aftra

James B. Fowler, B.E., M.A.A.S. Senior Consultant 2007 March 16

Member - Association of Australian Acoustical Consultants

This page left blank intentionally.

# **A5** | Fire Resistance

# Fire Resistance Levels (FRLs)

Fire rating requirements of the Building Code of Australia are specified in terms of Fire Resistance Levels (FRL). The FRL specifies the performance, in minutes, of fire tested specimens for each of the following three design criteria when fire tested to the requirements of the Australian Standard AS1530 `Methods for Fire Tests on Building materials, Components and Structures´ part 4 `Fire-Resistance Tests of Elements of Building Construction´:

## **Structural Adequacy**

The specimen can no longer carry its load.

# **Integrity**

Cracks or openings develop that allow the passage of flames or hot gasses.

#### Insulation

The unexposed face temperature rises by more than 140°C on average or 180°C for a single point.

For example, a wall system under fire test that carries its load for 120 minutes and maintains its integrity and insulation for 120 minutes is given a FRL of 120/120/120, ie 120 minutes structural adequacy, 120 minutes integrity and 120 minutes insulation.

Systems constructed to the standard required for a particular FRL may be used to satisfy the requirements of a lesser FRL.

# **Support**

Any structure required to support a fire rated system must have a fire resistance structural adequacy level of at least that of the system. This includes vertical support to ceilings and walls and lateral support to the top of walls which may be provided from both sides.

# **Adjacent Structure**

The BCA requires that building elements, other than roof sarking or certain roof battens, must not pass through or cross a fire wall unless the fire resistance of that fire wall is maintained.

Where trusses and beams pass over or through a fire rated partition, the following measures can be taken to ensure that the Fire Resistance Level of the partition is not degraded due to a failure of these members in the case of fire:

- Construct a fire rated ceiling that protects the structural members
- Fire protect the structural member or
- Ensure the partition can carry loading from the fire affected structural member and that the member can still carry its loading when it is supported on a partition (for trusses this may mean the inclusion of additional webbing above the partition). Ensuring the partition can carry these new loadings may require:
  - Making it into a load bearing partition
  - Constructing the partition with a protected column within it or
  - Constructing unprotected columns on both sides of the partition.

# **Portal Frame Behaviour**

In portal frames affected by the fire the rafters often push outwards on the column members until the ridge sinks and then pulls the columns inwards. Should drywall be used to provide a fire separation within portal framed building the above mode of failure needs to be recognised by the builder. As mentioned above, load bearing elements may need to be incorporated within, or adjacent to, the partition to maintain support to the roof structure during a fire event.

# S

# **Direction of Attack by Fire**

In most cases the direction of attack by fire is assumed to be from both sides of the partition and this is the default condition for FRLs listed within the Systems Index. In some cases, for example in exterior walls adjacent to a fire source feature (as defined in the BCA), the rating may be required from one side only.

# **Limiting Heights**

Limiting heights listed for fire rated steel stud partitions are the lesser of maximum fire heights and structural heights for a given wall configuration and stated lateral pressure. Maximum fire heights were derived from full scale tests carried out by CSIRO, BHP, BRANZ and from fire engineering principles. Limiting structural heights have been obtained by computation and from extensive mechanical testing. These heights meet the requirements of the Building Code of Australia and have been certified by Engineers.

# Resistance to the Incipient Spread of Fire (RISF)

The BCA stipulates instances when a ceiling system must be resistant to the incipient spread of fire. This requirement determines the ability of the ceiling to provide adequate thermal insulation to combustible materials within the ceiling plenum thus avoiding the danger of the materials there igniting. Many of the ceiling systems in this System Selector carry an RISF rating which is noted as such. RISF is a more onerous requirement than a FRL. Systems constructed to the standard required for a particular RISF may be used to satisfy the requirements of a lesser RISF.

# **Charfactors**

Charfactor numbers apply only to timber stud partition systems listed in the System Index. A Charfactor number is a dimensionless factor relating the amount of permissible char area of timber studs, when under fire test at the time of its structural collapse, to a given height and loading.

Charfactor Tables are provided in Part C of this System Selector for the purpose of assisting the designer in the selection of the appropriate timber partition frame sizes to meet the fire-rating requirements of the Building Code of Australia. Charfactor numbers were derived from joint studies carried out by CSIRO and BRANZ, to develop a method of determining the expected fire performance of timber systems by extrapolation from existing test data. The methods used to derive these Charfactor numbers are detailed in CSIRO and BRANZ technical reports.

## **Insulation Materials**

Batt, blanket, or loose wool

Insulation for thermal or acoustic reasons may be placed within partition cavities. The following is a list of insulation materials, that will not adversely affect the FRL.

# Insulation Materials Material Restriction Foil-backed sarking: batt, blanket, or loose rockwool or ceramic fibre Batt, blanket, or loose glass wool Batt, blanket, or loose polyester, or polyurethane sheet foam (with or without vinyl laminate) Restriction No restriction Any density or thickness, but no greater than 10% binder Any thickness but density within 20% of tested value

Any thickness but density not less

than a tested system

# **Fire Hazard Properties**

Plasterboard satisfies the Building Code of Australia requirements for Early Fire Hazard (EFH) properties of wall and ceiling linings. EFH properties for plasterboard and plaster products are as follows:

#### Early Fire Hazard Properties

| Product                                    | Ignitability<br>(0-20) | Spread<br>of Flame<br>(0-10) | Heat<br>Evolved<br>(0-10) | Smoke<br>Developed<br>(0-10) | Basis         |
|--------------------------------------------|------------------------|------------------------------|---------------------------|------------------------------|---------------|
| Boral Std<br>Core pbd<br>10, 13mm          | 14                     | 0                            | 1                         | 0-1                          | CSIRO FNE6351 |
| Boral<br>Unispan®<br>10mm                  | 14                     | 0                            | 2                         | 0-1                          | CSIRO FNE6142 |
| Boral Wet<br>Area pbd<br>10, 13mm          | 14                     | 0                            | 2                         | 1                            | CSIRO FNE6032 |
| Boral<br>Firestop®<br>pbd<br>13, 16mm      | 13                     | 0                            | 1                         | 2                            | CSIRO FNE6328 |
| Boral<br>Wet Area<br>Firestop®<br>13, 16mm | 14                     | 0                            | 2                         | 1                            | CSIRO FNE6032 |
| Boral<br>Shaftliner™<br>25mm               | 14                     | 0                            | 1                         | 2                            | CSIRO FNE6031 |

The EFH classification for wall and ceiling linings is being replaced in the BCA by classifications derived from Cone Calorimeter testing. Testing to this requirement carried out by BRANZ produced the following results:

#### Cone Calorimeter Testing

| Product                           | BCA Classification | Basis               |  |
|-----------------------------------|--------------------|---------------------|--|
| Boral Std Core pbd                | Group 1            | BRANZ FH3235/FH2188 |  |
| Boral Unispan® pbd                | Group 1            | BRANZ FH3470        |  |
| Boral Soundstop® pbd              | Group 1            | BRANZ FH3471        |  |
| Boral Wet Area pbd                | Group 1            | BRANZ FH3236/FH2189 |  |
| Boral Firestop® pbd               | Group 1            | BRANZ FH3237/FH2190 |  |
| Boral Shaftliner <sup>™</sup> pbd | Group 1            | BRANZ FH3473        |  |
| Boral Wet Area<br>Firestop™ pbd   | Group 1            | BRANZ FH3472        |  |

# Combustibility

Plasterboard is deemed to be a non combustible material for the purposes of the Building Code of Australia.

# Gas Appliances

Care is needed in the detailing of plasterboard walls around domestic gas cooking appliances and commercial catering equipment. Designers should check with the instructions and clearance requirements set out in Australian Standard AS 5601/AG601 `Gas Installations'.

# Gas Reticulation in Fire Rated Walls

Oxygen or combustible fluid reticulation systems should not be located within fire rated walls unless designed, fire tested and constructed to suit this application.

# **Smoke Walls**

Where smoke walls are required in accordance with the BCA, such walls can be lined with minimum 13mm thick Standard Core plasterboard.

This page left blank intentionally.

# Structure

As required by the relevant Australian design codes, walls must be checked against dead, live and wind loads etc for structural adequacy independently of any acoustic or fire design.

The wall frame design must allow for:

- Deflection expected from building movement and thermal expansion during fire service
- The support, including lateral support of any door or access panel frames, wall supported external cladding, internal lining, dampers, shelves, cupboards, attachments or other loadings required to be supported by the wall or wall embedded frame
- Any loadings due to internal or external pressure differentials.

# **Vertical Deflections**

Almost all structures will deflect during service. Designers should be aware of the expected deflections of the building structure as they affect partitions. These deflections may be due to both dead and live loadings. Non load bearing partitions are not designed to take any axial loading due to building deflection.

In fire rated steel stud walls, thermal expansion of studs of up to 5mm/m should be expected during fire service. Stud shortening due to thermal bowing may reduce the expansion, especially in thinner walls.

For ceilings systems, specifiers should be aware of the likelihood of frame movement due to structural, thermal, or seasoning effects on direct fixed plasterboard ceilings. Where necessary specify a furred system to minimise the risk of ceiling damage due to these effects.

Designers should make due allowance for expected framing deflections in considering deflection head requirements and, where necessary, refer to Boral Plasterboard Sales Offices for further information. Standard partition head details should accommodate normal service deflections. For load bearing, fire rated, steel stud walls, refer directly to Boral Plasterboard TecAssist 1800 811 222.

# **Plasterboard** as Structural Bracing

Boral Plasterboard does not recommend the use of plasterboard ceiling linings to brace the roof structure or individual roof truss chords.

Boral Plasterboard does not recommend the use of plasterboard for the dedicated bracing of walls.

# **Limiting Heights**

Wall heights for non load bearing walls must be within the maximum heights as set out in the tables in Section C.

Limiting heights for non load bearing steel framed walls have been provided for 0.25kPa and 0.35kPa lateral pressures and are based on L/240 deflection criteria set out in the BCA. Refer also to comments on limiting heights in Section A5.

For timber partition systems refer to comments on Charfactors in Section A5.

Maximum wall heights for load bearing non fire rated steel stud walls will be determined by the loadings, layout and sections used. Maximum wall heights for load bearing fire rated steel stud walls will be similarly determined by the loadings, layout and sections used, but an appropriate system must be adopted to provide protection to the wall frame as listed on page A6.2

# **Shelf Loading**

Walls, including fire rated walls, that carry shelf loadings must be designed accordingly. Refer Section C5 for permissible shelf loadings for steel stud walls. Refer to Boral Plasterboard for further information.

# **Load Bearing Fire Rated Steel Stud Walls**

A load bearing wall is a wall that is intended to resist vertical forces additional to those due to its own weight.

The following wall types with board to each side of single stud or twin stud wall may be used as load-bearing fire rated walls achieving the FRLs stated under the conditions listed below:

#### FRLs for Load Bearing Walls

| Firestop® Wall Lining |        | Fire<br>Resistance | Fire Attack |
|-----------------------|--------|--------------------|-------------|
| Side 1                | Side 2 | Level              | Direction   |
| 1x13mm                | 1x13mm | 30/30/30           | Both Sides  |
| 1x16mm                | 1x16mm | 60/60/60           | Both Sides  |
| 2x13mm                | 2x13mm | 90/90/90           | Both Sides  |
| 2x16mm                | 2x16mm | 120/120/120        | Both Sides  |

#### **Conditions:**

- All joints to be backed by nogging or studs. Elsewhere nogging to be provided at 1200mm maximum centres
- Bracing to be provided within the wall as required by structural design ignoring plasterboard contribution
- Frame to be designed by an appropriately qualified structural engineer and shall comply with AS/NZS 4600: 1996 Coldformed steel structures
- Any structure providing support, including lateral support, to the load bearing fire rated wall must have an FRL of at least that of the wall
- Stud splicing not allowed
- Otherwise wall to be lined to standard Boral Plasterboard non load bearing fire rated details.

# **Limiting Spans**

Ceiling spans must be within the maximum spans as set out in the Design Tables in Section C.

# Allowable Ceiling Loads

The mass of insulation or other materials supported directly by the plasterboard ceiling lining must not exceed 2kg/m². Unless fastened directly to the ceiling frame, designers must provide for extra framework above the ceiling to support heavy items such as large light fittings, hanging chairs, hanging TV monitors, etc.

# A7 | Wet Areas

# **Application**

Boral Wet Area System™ is designed for use in wet areas of residential buildings and other buildings where the use of wet areas is similar to that in residential buildings.

A Wet Area is defined as an area within a building supplied with water from a water supply system and includes bathrooms, showers, laundries and sanitary compartments.

# **Boral Wet Area System**™

Boral Wet Area System<sup>™</sup> is a wall system comprising Boral Wet Area Board<sup>™</sup>, Boral Wet Area Taping Cement<sup>™</sup>, Boral Wet Area Sealant<sup>™</sup> and Boral Wet Area SealCote<sup>™</sup> (if required).

Boral Wet Area System™ must be installed in accordance with specification contained in Boral Plasterboard Installation Manual to achieve the intended performance and to be covered by the manufacturer's guarantee.

## **Standards**

Boral Wet Area System™ complies with the requirements of AS3740-2004 `Waterproofing of wet areas within residential buildings´.

#### Note:

In South Australia installers should also refer Minister's Specification F1.7 for additional waterproofing requirements in wet areas.

Two liberal coats of Boral Wet Area SealCote<sup>™</sup> (min coating 500g/sq m each coat) constitute a waterproofing membrane complying with the requirements of AS/NZS 4858-2004 `Wet area membranes´.

Boral Wet Area Board™ is manufactured to the requirements of ASTM C630 `Specification for water-resistant gypsum backing board´.

# Boral Wet Area Board™

Boral Wet Area Board™ is manufactured with a moisture resistant core that stops water wicking up the board causing damage to the substrate or surface finish.

Boral Wet Area Board™ can be recognised by its blue-grey face liner and is manufactured with recessed edges for flush jointing within and outside of tiled areas.

Boral Wet Area Board™ must:

- Be fixed to framing only with mechanical fasteners when used as a substrate for tiling. Stud adhesives must not be used in tiled areas
- Be faced with ceramic tiles or other approved water resistant materials when installed in wet areas
- Only be applied to timber or steel framing or to a base layer of Boral Wet Area Board™, never to other types of plasterboard, plaster (gypsum or cement) or similar materials.
   Multiple layers of Boral Wet Area Board™ must be fastened to framing individually
- Be jointed with paper tape
- Not be installed over a vapour barrier
- Not be used in critical exposure areas such as group shower rooms or steam rooms
- Not be used in un-protected external applications
- Not be used if fractured or damaged.

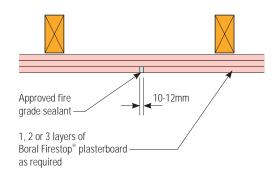
Where fire isolation is required in wet areas Boral Wet Area Firestop™ plasterboard is available and may, thickness for thickness, be substituted in place of Boral Firestop® plasterboard without adversely affecting the system's FRL.

Boral Plasterboard does not recommend the use of Wet Area Board™ in ceilings.

This page left blank intentionally.

# Design

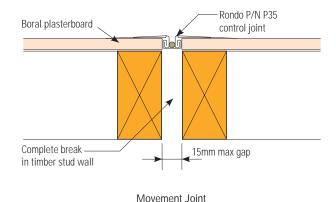
# **Design Considerations**


## General

## Design

In addition to the requirements for correct installation of linings, all wall and ceiling frames are to be designed and constructed to meet the relevant codes and regulations.

#### **Control Joints**


Control joints are required in unbroken walls and ceilings at no greater than 12 metre centres. Their purpose is to accommodate hygrometric (moisture caused) and/or thermally caused changes in the plasterboard dimensions.



Control Joint in Fire Rated System

#### **Movement Joints**

These joints are required in walls and/or ceilings in order to accommodate movements in the building structure due to, for example, shrinkage, settlement, wind or seismic forces. They include construction and expansion joints and joints at changes in substrates.



# **Acoustically Isolated Furring**

Acoustically isolated furring systems listed in the System Index incorporate acoustic mounts with a rubber element. To work effectively in ceilings, the hardness of these elements must be matched to the ceiling weight. Several types of acoustic mounts are available depending on the type of ceiling frame and applied loading.

Boral Acoustic Ceiling Mounts are suitable for multiple layer ceiling systems. Rubber elements within the mounts are colour coded to indicate load bearing capacity (blue dot - 17kg max load, white dot - 25kg max load).

Rondo Sound Isolation Mounts are recommended for single layer ceilings.







Rondo Sound Isolation Mount STWC

Boral Acoustic Impact Clips have been used in acoustic upgrades of masonry wall systems.



Boral Acoustic Impact Clip

#### **Resilient Channel**

This steel section, when fixed appropriately, provides a resilient mounting for plasterboard wall and ceiling linings thus reducing the transfer of acoustic energy between the frame and the linings. Care must be taken during construction that plasterboard screws do not bridge across the gap formed by the resilient channel.

A8. 1 BORAL PLASTERBOARD February 2009

# » General

#### **Fasteners**

For the correct selection of screws and nails for the construction of Boral Plasterboard systems refer to `Boral Plasterboard Installation Manual´ and the brochures for specific systems.

#### **Jointing**

Compounds used in finishing plasterboard joints may be any plaster or vinyl based compounds supplied by Boral Plasterboard that are normally used for this purpose.

Boral Plasterboard vinyl jointing compounds have been shown by test not to self ignite at temperatures below 200°C and thus are suitable for use in fire rated systems.

# Wall Systems

Unless specified otherwise, Boral Plasterboard wall systems are to be constructed using Rondo lipped C studs and track or timber frame with stud spacings of up to 600mm in straight, vertical sections and with standard fasteners and fastening centres. Base and head details, changes of direction and wall intersections, control and movement joints, doorways and plasterboard linings orientation and jointing should be in accordance with appropriate Boral Plasterboard installation details.

# Changes in Direction, Intersections and Terminations

Using the appropriate installation details, changes in direction, acute, right and obtuse angles and terminations may be formed in a wall without adversely affecting the FRL of the wall.

#### **Doors**

At doorsets in steel framed walls the studs adjacent to the jamb are usually boxed together for the purposes of supporting the door jamb. The remaining studs are single studs unless required to be boxed for other reasons.

When in doubt contact Boral Plasterboard or the door frame manufacturer.

# **Ceiling Systems**

In fire rated ceiling systems the plasterboard may be attached directly to the frame or via furring and/or a suspension system without adversely affecting the FRL of the system.

All fire resisting and acoustic ceilings require the perimeter to be sealed and joints to be finished.

Unless otherwise noted, ceiling linings are assumed to be supported at 600mm centres.

# **Maximum Plasterboard Spans**

Apart from the framing spacings determined by structural, fire and acoustic considerations, plasterboard support spacings should not exceed maximum plasterboard spans as indicated in the following table:

#### Maximum Plasterboard Spans (mm)

| Plasterboard Type  | Thickness (mm) | Walls | Internal Ceilings |
|--------------------|----------------|-------|-------------------|
| Flexiboard®        | 6              | 300   | -                 |
| Standard Core      | 10             | 600   | 450               |
|                    | 13             | 600   | 600               |
| Unispan®           | 10             | 600   | 600               |
| Wet Area Board™    | 10             | 600   | 300               |
|                    | 13             | 600   | 450               |
| Firestop®          | 13             | 600   | 600               |
|                    | 16             | 600   | 600               |
| Wet Area Firestop™ | 13             | 600   | 450               |
|                    | 16             | 600   | 600               |
| Soundstop®         | 10             | 600   | 450               |
|                    | 13             | 600   | 600               |
| Foil backed board  | 10             | 600   | 450               |
|                    | 13             | 600   | 600               |
| Shaftliner™        | 25             | 600   | 600               |
| Impactstop™        | 13             | 600   | 600               |

Reduced spans may be applicable to external ceilings. Greater plasterboard spans may be possible for some fire-rated wall systems such as D-Stud™ Cinema Wall. Refer Boral Plasterboard

# **Design Options**

for further information.

The following design options can be incorporated in Boral Plasterboard wall systems if required:

#### Insulation

Various forms of insulation can be placed within wall cavities and over ceilings to achieve acoustic or thermal requirements. However, designers should be aware of the following:

- The mass of insulation acting directly on ceilings must not exceed 2kg/m<sup>2</sup>
- Insulation that attracts and holds moisture for prolonged periods is not recommended for use in Boral Plasterboard ceiling systems.

#### **Overall Width of Partition**

Twin, chase and staggered stud walls, often used to form a services duct, can be varied in width to suit the building design. Note that reducing the width may adversely affect the acoustic and fire resisting properties of the partitions.

#### **Frame**

Other aspects remaining the same, steel stud depth and gauge greater than that specified may be used without adversely affecting the fire resistance of the wall system.

Permissible variations for fire rated timber framed systems include the following:

- Timber sections other than specified can be used provided that they are:
  - Of the same stress grade or higher
  - Of the same section or deeper, and/or wider
  - Of the same or higher average density.
- Treated timber can be used in place of untreated timber provided that its charring rate is proven to be no greater than by fire testing
- Studs or noggings may be paired, or installed at closer centres than shown (Acoustic considerations may limit the minimum stud centres)
- Flat strap, sheet or angle bracing flattened over studs before lining is applied may be used in timber framed walls without affecting the FRL or design capacity of the system provided

- the studs remain unnotched. These types of bracing can also be used in staggered stud walls
- Top plates in timber framed walls should be designed by a suitably qualified structural engineer where dead and/or live loads are applied at more than 1.5 x plate depth from the stud.

# Frame Spacing

UNO all plasterboard supporting framework must be spaced at no greater than 600mm centres. In some systems such as D-Stud™ Cinema Wall this spacing may be exceeded. Refer to Boral Plasterboard for further details.

#### Stud Substitution

Rondo steel studs have been used in the development of Boral Plasterboard acoustic, fire rated and structural systems. Limiting heights and spans listed are for Rondo studs only. Other stud sections should not be used unless it can be shown that they are at least equal to Rondo studs in all of the relevant performance characteristics.

Structural and fire properties of unlipped C section studs can vary significantly from those of lipped studs, therefore unlipped C Studs must not be used without their independent assessment for the prevailing conditions.

The Cinema Wall and D-Stud™ systems were developed using Bluescope Steel and Stramit top hat sections. Other sections may be used providing their mechanical and geometrical properties are at least equivalent to those stated for Bluescope Steel and Stramit top hat sections.

# » Design Options

# **Cavity Structures**

Ballistic or forcible entry protective items may be included within walls. In the case of fire rated walls adequate allowance must be made for expansion relief at the perimeter of ballistic/protective steel sheets.

Security mesh may be incorporated within steel framed fire rated walls to Boral Plasterboard details.

Noggings and plates may be incorporated within steel framed fire rated walls except that:

- The minimum cross sectional dimension of timber fixing plates or noggings to be 35mm, and
- The maximum weight of external attachments fixed to timber noggings or plates must not exceed 50% of that applicable to an equivalent non fire rated wall.

#### **Board Orientation**

In wall systems the sheets of plasterboard may be oriented with the bound edges horizontal, vertical or, in the case of multilayer systems, both horizontally and vertically oriented layers. This option may be useful in achieving the best outcome in the prevailing lighting conditions.

# **Fastener Details and Fixing**

Screws and nails of greater gauge and at lesser centres than specified may be used without adversely affecting the fire resistance level of a partition or ceiling.

# **Curved Walls and Ceilings**

Curved non fire rated walls and ceilings are to be supported at spacings as specified in Boral Plasterboard Installation Manual.

Refer to Boral Plasterboard for construction details for curved fire rated walls.

Curved fire rated ceilings to have a radius of no less than 6000mm.

#### **Beams and Columns**

Wall support beams, walls under beams, structural frames and columns within walls may be incorporated as per standard Boral Plasterboard details.

## Attachments, Shelf Loading Capacity

In general, items may be attached through a fire rated lining to the wall frame beneath providing that:

- The frame is designed and constructed to take the loading from the attachments and
- The attachments have a self ignition temperature of greater than 200°C.

Electrical conduits may be attached to steel stud partitions by means of clipping to screw fixed pressed metal sections without detrimentally affecting the already established fire resistance levels of the partition provided that:

- The conduits are self supporting and do not impose any axial load to the partition and
- The clips used to restrain the conduits are manufactured from a material having a melting point not exceeding 250°C.

Refer to Boral Plasterboard for attachment options for non load bearing walls.

For load bearing steel stud walls, framing and fastenings are to be designed by an appropriately qualified structural engineer and shall comply with AS/NZS 4600:1996 Cold-formed steel structures.

# **Exterior Cladding, Lining**

Exterior cladding or interior lining may be added to walls providing the frame is designed and constructed to accommodate the extra loading and, in the case of fire rated walls, the self ignition temperature of the cladding components exceeds 200°C.

As with other materials, plasterboard clad exterior walls will require careful detailing to avoid problems associated with effects of moisture.

#### **Penetrations**

Access hatch, duct, GPO, lighting recesses, tapsets, pipe and cable penetrations in fire rated walls and ceilings are to be constructed to fire tested or assessed details.

The incorporation of services and penetrations must not adversely affect the structural capacity of the framing members or the acoustic properties of the wall system.

# » Design Options

## **Lighting Recesses and Service Chases**

Where items such as lights, plumbing, heating or electrical services are fitted within or pass up through a fire rated wall, the recess/chase must first be framed out then the top, bottom, sides and back are to be lined using the same thickness and number of linings as on the penetrated face of the wall. All corners between plasterboard are to be formed herringbone style, backed by a stud, metal stud track or angle of greater than 0.4mm (BMT) and any cable penetrations are to be sealed with an approved fire grade sealant. Refer to the relevant Boral Plasterboard technical publications for further details.

#### Note:

The acoustic isolation capacity of walls is likely to suffer where chases and/or lighting recesses are provided within the wall or ceiling

Lighting or other heat producing items should not be included within walls where there is any likelihood that, through continuous, extensive use, temperatures in the plasterboard surrounding the fitting remain above 42°C for a prolonged period of time.

#### **Access Panels**

Access panels up to 600mm square may be constructed within non load bearing fire rated walls with a FRL of up to -/120/120. Pre-fabricated non fire rated and fire rated access panels are also available - refer to panel manufacturers for further details and fire test reports/certificates.

## **Ducts, Dampers and Grilles**

Where items such as ducts, dampers and grilles pass through a fire rated wall, the aperture must first be framed out allowing for lining and sealing of the aperture and expansion of the penetrating item during fire service. A useful rule of thumb for the amount of expansion to be allowed for is 10mm + 1% of the side under consideration. Some dampers are built to absorb their thermal expansion within their outside dimensions.

The wall frame may need to be strengthened locally to account for any crippling of studs causing redistribution of loadings into the adjacent full height studs (ie these studs may be required to be boxed).

The aperture should be lined using the same thickness and number of linings as on the face of the wall. The sealing/ mounting system around the penetrating item is to be as tested or assessed for that particular item.

This page left blank intentionally.

# B | System Index

| B1 | System Index Notes |
|----|--------------------|
| B2 | Walls              |
| В3 | Ceilings           |
| B4 | Other Systems      |









# **B** | Contents

## **B1** | System Index Notes

| System Identification | B1.1 |
|-----------------------|------|
| System Index Overview | B1.3 |
| System Selection      | B1.5 |
| System Specification  | B1.6 |
| System Construction   | B1.6 |
| System Types          | B1.7 |
| System Key            | B1.8 |

## B2 | Walls

| Walls Lined One Side – Timber Framed                    | B2.1          |
|---------------------------------------------------------|---------------|
| Walls Lined One Side – Steel Framed                     | B2.1          |
| Walls Lined Both Sides – Timber Framed                  | B2.2          |
| Walls Lined Both Sides – Steel Framed                   | B2.5          |
| Timber Framed Staggered Stud Systems                    | B2.9          |
| Steel Framed Staggered Stud Systems                     | B2.10         |
| D-Stud Walls                                            | B2.12         |
| D-Stud Cinema Walls                                     | B2.13         |
| Timber Framed Twin Stud Systems                         | B2.14         |
| Steel Framed Twin Stud Systems                          | B2.1 <i>6</i> |
| Separating Wall Systems – Partiwall                     | B2.20         |
| Separating Wall Systems – IntRwall                      | B2.24         |
| Shaft Systems – Shaft Wall                              | B2.33         |
| Shaft Systems - Ventshaft                               | B2.34         |
| Masonry Wall System - Lining                            | B2.35         |
| Masonry Wall Systems – Fire Upgrades                    | B2.3 <i>6</i> |
| Masonry Wall Systems – Acoustic Upgrades                | B2.37         |
| External Wall Systems – Fireclad                        | B2.48         |
| External Wall Systems – OutRwall                        | B2.49         |
| External Wall Systems – Brick Veneer                    | B2.51         |
| External Wall Systems - Spandrel                        | B2.53         |
| Other Wall Systems – Subfloor Separation                | B2.55         |
| Other Wall Systems – Hybrid Wall System, 4hr fire rated | B2.55         |

## **B3** | Ceilings

| Ceilings Under Tile Roof                         |       |
|--------------------------------------------------|-------|
| Direct Fixed                                     | B3.1  |
| Furred                                           | B3.2  |
| Furred on Acoustic Mounts                        | B3.3  |
| On Resilient Channels                            | B3.3  |
| Ceilings Under Metal Roof                        |       |
| Direct Fixed                                     | B3.4  |
| Furred                                           | B3.5  |
| Furred on Acoustic Mounts                        | B3.6  |
| On Resilient Channels                            | B3.7  |
| Suspended                                        | B3.8  |
| Suspended on Acoustic Mounts                     | B3.9  |
| Ceilings Under Bare Timber Floor                 |       |
| Direct Fixed                                     | B3.10 |
| Furred                                           | B3.11 |
| Furred on Acoustic Mounts                        | B3.12 |
| On Resilient Channels                            | B3.13 |
| Ceilings Under Carpeted Timber Floor             |       |
| Direct Fixed                                     | B3.14 |
| Furred                                           | B3.15 |
| Furred on Acoustic Mounts                        | B3.16 |
| On Resilient Channels                            | B3.17 |
| Ceilings Under Tiled Timber Floor                |       |
| Direct Fixed                                     | B3.18 |
| Furred                                           | B3.19 |
| Furred on Acoustic Mounts                        | B3.20 |
| On Resilient Channels                            | B3.21 |
| Ceilings Under Bare Concrete Floor               |       |
| Furred                                           | B3.22 |
| Furred on Acoustic Mounts                        | B3.23 |
| Suspended                                        | B3.24 |
| Suspended on Acoustic Mounts                     | B3.25 |
| Ceilings Under Carpeted Concrete Floor           |       |
| Furred                                           | B3.26 |
| Suspended                                        | B3.27 |
| Over Partition Room-to-Room Via Ceiling          | B3.28 |
| Spanning Ceiling Systems – D-span                | B3.31 |
| Spanning Ceiling Systems – C-sections            | B3.31 |
| Spanning Ceiling Systems – Horizontal Shaft Wall | В3.32 |
| Special Ceiling Systems                          | B3.33 |

## **B4** Other Systems

| Soil and Waste Pipe Systems   | B4.1  |
|-------------------------------|-------|
| Protection - Concrete Columns | B4.5  |
| Protection - Steel Columns    | B4.6  |
| Protection - Timber Columns   | B4.9  |
| Protection - Steel Beams      | B4.10 |
| Protection - Timber Beams     | B4.11 |
| Fire Tunnels                  | B4.12 |

# System Index Notes

#### **System Identification**

For some time it has been recognised that the naming of plasterboard systems varied widely within the industry and was not helpful in ready recognition of the system quoted or in the description of the system. Boral Plasterboard has derived and adopted an identifying method that reflects the basic physical form, be it a wall, a ceiling etc of all its plasterboard systems. An explanation of this system labelling as used in this publication is set out below.

#### How it Works

System labels describe the physical system commencing with the frame and continuing through to the linings.

All labels are of the form AABBCCDD.

AA is the type of system in the order function/substrate/type as listed within the System Types (AA) table at the end of this subsection.

BB is the total thickness of plasterboard to the thinner, upper, outer, (or only) side of the system.

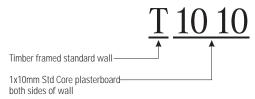
CC is the total plasterboard thickness to the other side of the system (if there is one).

DD is the board type applied as set out below where that type is not Standard Core plasterboard.

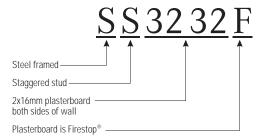
#### Key

| DD | Plasterboard Type                         |
|----|-------------------------------------------|
| А  | Boral Soundstop <sup>®</sup>              |
| F  | Boral Firestop® (may include Shaftliner™) |
| W  | Boral Wet Area Board™                     |
| WF | Boral Wet Area Firestop™                  |
| U  | Boral Unispan®                            |

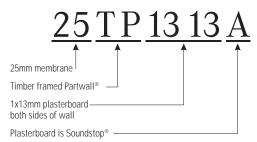
#### Note:


- Board type identifier has been omitted for Boral Standard Core plasterboard
- Where multiple layers of the same type of plasterboard are applied to one side of system, their thicknesses are combined into one total board thickness number followed by the board type identifier
- Where the same type of board is used on both sides of the system, total board thicknesses on each side are shown consecutively followed by the board type identifier
- · Where different types of board are used in the system, the relevant board type identifier is shown for each type of board
- Board type identifiers should not be confused with the similar system type identifiers which may be present in the beginning of the system label
- Any plasterboard thickness shown in brackets is to be installed between the studs rather than across the stud flanges in the normal manner.

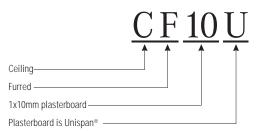
#### Plasterboard Identification Examples


- 2x13mm Firestop® plasterboard on one side only of a wall frame would be listed as 26F
- 13mm Firestop® plasterboard on both sides of a wall frame would be listed as 1313F
- 1x16mm Firestop® plasterboard on both sides of a wall frame + 13mm Firestop® plasterboard on one side would be listed as 1629F
- 16mm Firestop® plasterboard on both sides of a wall frame + 10mm Standard Core plasterboard on one side would be listed as 1616F10
- 16mm Firestop® plasterboard + 13mm Soundstop® plasterboard on both sides of a wall frame would be listed as 16F13A16F13A.

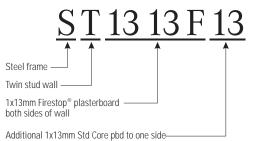
## » System Identification


**a** Where previously a timber framed wall lined on both sides with a single layer of Boral 10mm Standard Core plasterboard was referred to as system ATS4 (in the Plasterboard Building Systems Acoustic Selector), it is now known as system T1010.




Where previously a steel framed staggered stud wall lined on both sides with two layers of Boral 16mm Firestop® plasterboard was referred to as system SSS4, it is now known as system SS3232F.




C Where previously a timber framed Partiwall® lined on both sides with a single layer of Boral 13mm Soundstop® plasterboard was referred to as system PWT3, it is now known as system 25TP1313A.



d Where previously a ceiling lined with a single layer of Boral 10mm Unispan® plasterboard on furring channels was one of the CS18 systems, it is now known as system CF10U.



e A steel framed twin stud wall lined with a single layer of Boral 13mm Firestop™ plasterboard to both sides plus a layer of 13mm Standard Core plasterboard to one side only is now known as system ST1313F13.



**System Index Overview** 

# Fire Resistance

Abbreviations used in the index are listed in the Abbreviations part of Section A1.

PLASTERBOARD SYSTEMS

Moving from left to right of the Index the first column is Layout. The layout graphic gives a ready visual identification of the generic system as a check.

Next column is System Reference. For those familiar with the old system references there is listing at the end of the System Selector comparing the new references with the old naming convention.

Both the Layout and System Reference should be read in conjunction with the comments in the Description column. Details A to J mentioned in the masonry and column protective system listings are as described prior to those listings.

The Description is followed by Approx Pbd Mass column containing the weights of plasterboard component of various systems in kg/m<sup>2</sup>. The mass listed depends on the type, thickness and number of layers of plasterboard used.

Fire Resistance columns contain the Fire Resistance Levels (FRL) of various systems and the basis, usually a fire test opinion, upon which the FRL is claimed.

Unless otherwise noted all fire ratings for ceilings and walls are from both directions. Note that FRL's without a structural adequacy figure (ie -/90/90), indicate non load bearing systems. In the case of some ceilings the FRL is followed by the Resistance to the Incipient Spread of Fire (RISF).

#### **Physical Features**

The Stud Size is listed primarily to define the cavity for acoustic properties or to limit the range of stud sizes for fire resistance reasons.

The Nominal Width is the overall width of the system including the frame and the plasterboard lining on it.

|         |                       |            |                                              | Approx          | Fire Re  | sistance                                |                | Nom           |                | Aco            | ustic Rating               | c Ratings       |  |
|---------|-----------------------|------------|----------------------------------------------|-----------------|----------|-----------------------------------------|----------------|---------------|----------------|----------------|----------------------------|-----------------|--|
|         |                       |            |                                              | Pbd             |          |                                         | Stud           | Wall          | Nil Insul      | With           | Insulation                 | l               |  |
| Layout  |                       | System Ref | Description                                  | Mass<br>(kg/m²) | FRL      | Basis                                   | Size<br>(mm)   | Width<br>(mm) | R <sub>W</sub> | R <sub>w</sub> | $R_{\rm w}$ +C $_{\rm tr}$ | Insulat<br>Type |  |
| Walls L | ined Both Side        | es - Steel | Framed                                       |                 |          |                                         |                |               |                |                |                            |                 |  |
|         |                       | S1010      | 1x10mm Std Core pbd to each side             | 13.6            | -/20/20  | WRFA F91815                             | 51             | 71            | 34             | 38             | 28                         | 50G11.50        |  |
|         |                       | 0.0.0      | of stud                                      | 10.0            | 720720   | *************************************** | 64             | 84            | 34             | 40             | 29                         | 50G11, 5        |  |
|         |                       |            |                                              |                 |          |                                         | 76             | 96            | 34             | 40             | 29                         | 70G11, 7        |  |
|         |                       |            |                                              |                 |          |                                         | 92             | 112           | 35             | 41             | 30                         | 90G11, 10       |  |
|         |                       |            |                                              |                 |          |                                         | 150            | 170           | 34             | 40             | 29                         | 90G11, 10       |  |
|         |                       | S1010A     | 1x10mm Soundstop pbd to each                 | 16.4            | Nil      | NA                                      | 51             | 71            | 35             | 42             | 32                         | 50G11, 5        |  |
|         |                       |            | side of stud                                 |                 |          |                                         | 64             | 84            | 36             | 43             | 32                         | 50G11, 5        |  |
|         |                       |            |                                              |                 |          |                                         | 76             | 96            | 36             | 45             | 33                         | 70G11, 7        |  |
|         |                       |            |                                              |                 |          |                                         | 92             | 112           | 37             | 46             | 34                         | 90G11, 10       |  |
|         |                       |            |                                              |                 |          |                                         | 150            | 170           | 36             | 44             | 33                         | 90G11, 10       |  |
|         | 10.3                  | S1313      | 1x13mm Std Core pbd to each side of stud     | 17.2            | -/30/30  | WFRA C91553<br>WFRA C91555              | 51             | 77            | 35             | 42             | 31                         | 50G11, 5        |  |
|         | NO.                   |            |                                              |                 | 20/20/20 |                                         | 64<br>76<br>92 | 90            | 35             | 43             | 31                         | 50G11, 5        |  |
|         |                       |            |                                              |                 |          |                                         |                | 102           | 36             | 44             | 33                         | 70G11, 7        |  |
| 1       |                       |            |                                              |                 |          |                                         |                | 118           | 37             | 45             | 34                         | 90G11, 1        |  |
|         | 1                     |            |                                              |                 |          |                                         | 150            | 176           | 36             | 44             | 33                         | 90G11, 10       |  |
| Sys     | tem S1313 illustrated | S1313A     | 1x13mm Soundstop pbd to each<br>side of stud | 22.4            | Nil      | NA                                      | 51             | 77            | 36             | 44             | 33                         | 50G11, 5        |  |
|         |                       |            | zine oi zinn                                 |                 |          |                                         | 64             | 90            | 37             | 45             | 34                         | 50G11, 5        |  |
|         |                       |            |                                              |                 |          |                                         | 76             | 102           | 38             | 49             | 36                         | 75G1            |  |
|         |                       |            |                                              |                 |          |                                         | 92             | 118           | 38             | 49             | 37                         | 70G11, 10       |  |
|         |                       |            |                                              |                 |          |                                         | 150            | 176           | 37             | 48             | 36                         | 90G11, 1        |  |

Sample Table

#### » System Index Overview

#### **Acoustic Isolation**

Acoustic ratings are provided for systems with or without insulation. All acoustic ratings are based on opinion Sheet No.104 from Graeme E. Harding and Associates Pty Ltd. For a copy of the opinion refer to Section A4.

All acoustic ratings listed are for a stud spacing of 600mm. Where insulation is listed, unless noted otherwise, it is required in one side only of staggered, twin or furred systems.

Twin timber or steel stud walls and some Partiwall® and IntRwall® systems comply as discontinuous construction under BCA 2005 vol 1, part F5 and vol 2, part 3.8.6. For Partiwall® systems this assumes that floors are aligned. Staggered stud walls may be deemed to be discontinuous construction for certain types of building construction. A ruling from a building certifier would be required for specific projects.

 $L_{n,w} + C_1$  ratings are provided for floor systems to indicate their impact noise isolation properties.

The acoustic values listed for timber floor/ceiling systems assume:

- A minimum of 19mm chipboard on 190mm deep joists
- All furred systems incorporate a clip for the attachment of the furring channel
- Tiles are laid on a 6mm thick cement sheet (total mass nom 15kg/m²)
- · Carpeted timber floors assume that an underlay is used.

For ceilings under concrete floors:

- The airborne and impact noise isolation of most ceilings is limited by flanking transmission
- Ceilings under bare concrete floors assume a minimum 150mm thickness of concrete.

#### **Thermal Resistance**

Thermal Resistance (R) ratings are provided for external wall systems.

These R values:

- Include an allowance of 0.09 (internal) + 0.03 (external) = 0.12m<sup>2</sup>K/W for surface resistance
- Assume, UNO, that all stud gauges are 1.15mm BMT
- Are calculated using the Isothermal Planes method according to H.A. Trethowan
- For Standard Core, Firestop™ and Shaftliner™ plasterboard are calculated from thermal conductivities per BRANZ report EC0713 of 22 Oct 2003
- Are calculated assuming the insulation listed is fitted tightly between the studs.

A System Key is included at the end of Section B1 to assist with selection of systems for particular applications.

#### **System Selection**

#### **System Selection Procedure Example**

Select non load bearing steel stud wall system that satisfies the following performance requirements:

Fire rating: FRL -/120/120 from both sides

Acoustic rating:  $R_w+C_{tr}=50$ dB and discontinuous construction

Height: 4100mm slab to slab

Head deflection: 20mm

Design pressure: 0.25kPa

#### Procedure

**Step 1 -** Select the most economical wall system satisfying fire rating requirements

- Refer to Section B2 Walls
- Under 'Steel Framed Twin Stud Systems', scroll down the Fire Resistance columns to find the first system with FRL -/120/120. This system is ST2626F (page B2.18).

**Step 2 -** Check if the system satisfies acoustic requirements

 On the same page move across to Acoustic Ratings columns to confirm that the system achieves R<sub>w</sub>+C<sub>tr</sub>=50dB. System ST2626F with acoustic insulation exceeds R<sub>w</sub>+C<sub>tr</sub>=50dB acoustic rating for stud sizes from 51mm to 150mm

**Step 3 -** Select the stud size and spacing to satisfy structural requirements

- Refer to page C2.6 'Maximum Wall Heights: Non-load Bearing Steel C Studs – Lined One Side'
- Under Maximum Wall Pressure 0.25kPa and Maximum Stud Centres 600mm (Nogged) scroll down the column 2x13mm lining both sides FRL -/120/120 to find the wall height at least equal to 4100mm (in this case the table contains the height 4180mm with subscript '2d' indicating that this height is limited by deflection criteria)
- Move across to Stud column to identify the stud size required to achieve this height: 92CS75
- From the notes on page C2.2 we note that nogged walls lined one side that are between 3000mm – 6000mm in height require noggings at 1/3 spacing and an extra nogging 100mm from the top.

#### Step 4 - Check head track capacity

- Deflection head track (DT) must be used to accommodate 20mm head deflection
- Stud head (and base) reaction at 250Pa is 0.6 (stud spacing in metres) x 4.1 (stud height in metres) / 2 x 250 (Pa pressure) = 308N (0.31kN)
- Refer to relevant table of head capacities (Rondo TDS/03-106) which, in this configuration, allows 0.44kN for track capacity with a 20mm gap at head for 0.75mm BMT gauge track. This capacity exceeds the 0.31kN required so is OK.

#### Step 5 - Confirm Acoustic Rating

- Refer back to Section B2 Walls
- For system ST2626F and stud size 92CS75 find that actual acoustic rating is R<sub>w</sub>+C<sub>tr</sub>=54dB (with 50G14 or 50P14 insulation).

#### Step 6 - Check List

 Refer to Check List to confirm that all the relevant aspects have been addressed.

#### Conclusion

System ST2626F with 92CT75 base tracks, 92DT75 deflection head tracks, 92CS75 studs at 600mm spacings with noggings at 1/3 spacing and 100mm from the top, satisfies fire, acoustic and structural performance requirements.

#### **System Specification**

Although the system label contains information about the basic system, it does not provide a full description of the system as required for the purposes of project specification.

For a full and unambiguous description of a Boral Plasterboard system, the label must be accompanied by the performance specification, which may include:

- · Fire resistance level (FRL)
- Acoustic isolation rating (R<sub>w</sub> or R<sub>w</sub>+C<sub>tr</sub>)
- Acoustic impact noise isolation rating (L<sub>n,w</sub>+C<sub>l</sub>)
- Design lateral pressure
- · Any imposed loads
- Maximum (or minimum) wall width
- Maximum wall deflection
- Expected soffit deflection.

To adequately specify a system, the above system label and performance specification should be accompanied by additional information such as:

- Stud size
- Wall height
- Type and location of acoustic/thermal insulation
- Number, location and size of noggings and fixing plates
- · Requirement for special heads
- Additional furring channels
- The required level of finish
- The presence within the system of other items eq protective steel mesh or sheet.

Example of system specification is:

Boral Plasterboard system SS3232F

FRL -/120/120

 $R_w = 50dB$ 

Max wall width 214mm

Wall height 3000mm

0.25kPa lateral pressure.

#### **System Construction**

A check list is included at the end of Section C as a guide to parameters that may influence system design and specification.

While adequate system specification is extremely important, Boral Plasterboard installation instructions must be followed in order to achieve the specified performance on site. Refer to relevant Boral Plasterboard publications for installation details of particular systems.

## **System Types** (Refer System Identification Notes on page B1.1)

| Panel Thickness | Function           | Substrate               | Туре                                  | System Type |
|-----------------|--------------------|-------------------------|---------------------------------------|-------------|
|                 | (wall)             | Timber frame            | (standard)                            | T           |
|                 | (wall)             | Timber frame, furred    | (standard)                            | TF          |
|                 | (wall)             | Timber frame, RC 1 side | (standard)                            | TR          |
|                 | (wall)             | Steel frame             | (standard)                            | S           |
|                 | (wall)             | Timber frame            | Staggered                             | TS          |
|                 | (wall)             | Steel frame             | Staggered Staggered                   | SS          |
|                 | (wall)             | (only ever steel)       | <b>D</b> -Stud                        | D           |
|                 | (wall)             | Timber frame            | Twin                                  | TT          |
|                 | (wall)             | Steel frame             | Twin                                  | ST          |
| 25 mm           | (wall)             | Timber frame            | Partiwall                             | 25TP        |
| 50 mm           | (wall)             | Timber frame            | Partiwall                             | 50TP        |
| 25 mm           | (wall)             | Steel frame             | Partiwall                             | 25SP        |
| 50 mm           | (wall)             | Steel frame             | Partiwall                             | 50SP        |
| 30 11111        | (wall)             | (only ever steel)       | IntRwall                              | 50IW        |
|                 | (wall)             | , ,                     | IntRwall, Furred                      | 50IWF       |
|                 | ` '                | (only ever steel)       |                                       | 50IWFR      |
|                 | (wall)             | (only ever steel)       | IntRwall, FRFC                        |             |
|                 | (wall)             | (only ever steel)       | SHaft Wall                            | SH          |
|                 | (wall)             | (nil)                   | Ventshaft                             | VS          |
|                 | (wall)             | (only ever steel)       | Sub Floor                             | SF          |
|                 | (wall)             | (only ever steel)       | Fireclad                              | FC          |
|                 | (wall)             | (only ever timber)      | <b>O</b> utR <b>w</b> all             | OW          |
|                 | (wall)             | Timber frame            | Brick Veneer                          | TBV         |
|                 | (wall)             | Steel frame             | Brick Veneer                          | SBV         |
|                 | (wall)             | (only ever steel)       | <b>SP</b> andrel                      | SP          |
|                 | (wall)             | Masonry                 | (upgrade)                             | M           |
|                 | (wall)             | Masonry                 | Furring                               | MF          |
|                 | Ceiling            | (steel or timber)       | (standard)                            | С           |
|                 | Ceiling            | (steel or timber)       | Furred                                | CF          |
|                 | Ceiling            | (steel or timber)       | Furred, Acoustic mount                | CFA         |
|                 | <b>C</b> eiling    | (steel or timber)       | Resilient channel                     | CR          |
|                 | <b>C</b> eiling    | (steel or timber)       | Suspended                             | CS          |
|                 | <b>C</b> eiling    | (steel or timber)       | Suspend, Acoustic mount               | CSA         |
|                 | <b>C</b> eiling    | (only ever steel)       | <b>D</b> -Span                        | CD          |
|                 | Ceiling            | (only ever steel)       | <b>SP</b> anning                      | CSP         |
|                 | Ceiling            | (only ever steel)       | Horizontal Shaft wall                 | CHS         |
|                 | Ceiling            | (steel or timber)       | Over Partition, Plenum Barrier        | COB         |
|                 | Ceiling            | (steel or timber)       | Over Partition, Continuous Ceiling    | COC         |
|                 | Ceiling            | (steel or timber)       | Over Partition, Discontinuous Ceiling | COD         |
|                 | Ceiling            | (steel or timber)       | Over Partition, Oarrier, Tiled        | COBT        |
|                 | Ceiling            | (steel or timber)       | Over Partition, Continuous, Tiled     | COCT        |
|                 | Ceiling            | (steel or timber)       | Over Partition, Discontinuous, Tiled  | CODT        |
|                 | (acoustic)         | (steel or timber)       | Waste Pipe                            | WP          |
|                 | (acoustic)         | (steel or timber)       | Waste Pipe, Boxed                     | WPB         |
|                 | (acoustic)         | (steel or timber)       | Waste Pipe, Lagged                    | WPL         |
|                 | (acoustic)         | Steel frame adjacent    | Waste Pipe                            | SWP         |
|                 | (acoustic)         | Timber frame adjacent   | Waste Pipe                            | TWP         |
|                 | Protection         | Concrete                | Soffit                                | PCS         |
|                 | <b>P</b> rotection | Concrete                | Column                                | PCC         |
|                 | <b>P</b> rotection | Steel                   | Column                                | PSC         |
|                 | <b>P</b> rotection | Timber                  | Column                                | PTC         |
|                 | <b>P</b> rotection | Steel                   | <b>B</b> eam                          | PSB         |
|                 | Protection         | Steel                   | Beam, Concrete floor                  | PSBC        |
|                 | Protection         | Steel                   | Beam, Timber floor                    | PSBT        |
|                 | Protection         | Timber                  | <b>B</b> eam                          | PTB         |
|                 | Fire Tunnel        | (only ever steel)       | From <b>B</b> oth directions          | FTB         |
|                 | Fire Tunnel        | (only ever steel)       | From <b>O</b> utside only             | FTO         |

#### With reference to the above table note that:

• Shaft Wall and Horizontal Shaft Wall only ever has 1x25mm Shaftliner™ and therefore this layer is identified within the SH and CHS labels.

## **System Key**

| System Key                  |   |             |            |             |        |           |       |        |           |    |      |           |      |      |        |          |              |           |                       |            |            |           |     |              |           |      |             |     |      |     |          |     |         |     |     |    |      |      |      |     |          |     |              |              |              |       |       |             |
|-----------------------------|---|-------------|------------|-------------|--------|-----------|-------|--------|-----------|----|------|-----------|------|------|--------|----------|--------------|-----------|-----------------------|------------|------------|-----------|-----|--------------|-----------|------|-------------|-----|------|-----|----------|-----|---------|-----|-----|----|------|------|------|-----|----------|-----|--------------|--------------|--------------|-------|-------|-------------|
|                             |   | /ste        |            |             |        |           |       |        |           |    |      |           |      |      |        |          |              |           |                       |            |            |           |     |              |           |      |             |     |      |     |          |     |         |     |     |    |      |      |      |     |          |     |              |              |              |       |       |             |
|                             | W | alls        | 5          |             |        |           |       |        |           |    |      |           |      |      |        |          |              |           |                       |            |            |           |     |              |           |      |             | Cei | ling | S   |          |     |         |     |     | Sh | afts | s/Du | ucts |     | Pro      | tec | ctive        | )            |              |       |       |             |
|                             |   |             |            |             |        |           |       |        |           |    |      |           |      | ,  , | ۶ ا    | ۲   ج    | N K          |           |                       |            |            |           |     |              |           |      |             |     |      |     |          |     |         |     |     |    |      |      |      |     |          |     |              |              | ر            | ا د   |       |             |
| Project Type                |   | ⊭           | <u>ا</u> ۾ | ر           | 0 F    | 2         | SS    |        | ⊨l        | ST | 25TP | 50TP      | 25SP | 50SP | 20100  | SOIWE    | SULVER       | - L       | 7 N                   | V.S<br>SF  | 5 C        |           | TBV | SBV          | SP        | ≥    | MF          | S   | CF   | CFA | ر<br>ا د | 2 2 | CD      | CSP | CHS | WP | WPB  | WPL  | SWP  | TWP | PCS      | PCC | PSC          |              | PSB<br>PSBC  | PSBT  | PTB   | FTB<br>FT0  |
| Houses                      | • |             | -          |             |        | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | -          | •         | •   | •            | -         | •    | •           | •   | •    |     |          |     | -       | -   | -   | -  | -    | -    | -    | -   | -        | -   |              |              |              |       | •     |             |
| Duplex                      | • | •           | •          |             | ,      | •         | •     | •      | •         | •  | •    | •         | •    | •    | -      | -        |              |           |                       | . •        | -          | •         | •   | •            | -         | •    | •           | •   | •    |     |          |     | -       | -   | -   | •  | •    | •    | •    | •   | -        | -   | •            |              | • -          |       | •     |             |
| Row House                   | • | -           | •          |             |        | •         | •     | •      | •         | •  | •    | •         | •    | •    | -      | -        |              |           |                       | . •        | -          | •         | •   | •            | -         | •    | •           | •   | •    |     |          |     | -       | -   | -   | •  | •    | •    | •    | •   | -        | -   | •            |              | • -          |       | •     |             |
| Terrace House               | • | -           | •          |             |        | •         | •     | •      | •         | •  | •    | •         | •    | •    | -      | -        |              |           |                       | . •        | -          | •         | •   | •            | -         | •    | •           | •   | •    |     |          |     | -       | -   | -   | •  | •    | •    | •    | •   | -        | -   | •            | •            | • -          |       | •     |             |
| Town House                  | • | -           |            |             | ,      | •         |       |        |           |    |      | •         |      |      | -      | -        |              |           |                       | . •        | -          | •         | •   | •            | -         | •    | •           |     |      |     |          |     | -       | -   | -   | •  | •    | •    |      | •   | _        | -   |              |              | • -          |       | •     |             |
| Villa Unit                  | • | -           | •          |             |        | •         | •     | •      | •         | •  | •    | •         | •    | •    | -      | -        |              |           |                       | . •        | -          | •         | •   | •            | -         | •    | •           | •   | •    | _   |          |     | -       | -   | -   | •  | •    | •    | •    | •   | -        | -   | •            | •            | • -          |       | •     |             |
| Boarding House              | • | -           |            |             | ,      | •         | •     | •      | •         |    | _    | _         | -    | _    | •      |          |              |           |                       |            | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            |              |              |       | •     |             |
| Guest House                 | • | -           | •          |             | ,      | •         | •     | •      | •         | •  | -    | -         | -    | -    | •      | •        |              |           |                       |            | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            |              |              |       | •     |             |
| Backpackers'                | • | -           | •          |             | ,      | •         | •     | •      | •         |    | _    | _         | -    | _    | •      |          |              |           |                       |            | -          | -         | •   | •            | •         | •    | •           |     | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   |          | •   | •            |              |              |       | •     |             |
| Hostels                     | • | -           | •          |             |        | •         | •     | •      | •         | •  | -    | -         | -    | -    | •      | •        |              |           |                       | •          | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            | •            |              |       | •     |             |
| Lodging House               | • | -           | •          |             |        | •         | •     | •      | •         | •  | -    | -         | -    | -    | •      | •        |              |           |                       | •          | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            |              |              |       | •     |             |
| Residential Garage          | • | -           | -          |             |        | •         | •     | •      | •         | •  | •    | •         | •    | •    | -      | -        |              |           |                       |            | •          | •         | •   | •            | -         | •    | •           | •   | •    |     |          |     | -       | -   | -   | -  | -    | -    | -    | -   | -        | -   | •            | •            | • -          |       | •     |             |
| Multi Res Low Rise          | • | -           | •          |             | ,      | •         | •     | •      | •         | •  | -    | -         | -    | -    | •      | •        |              |           |                       |            | -          | -         | •   | •            | -         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | _        | -   | •            | •            |              |       | •     |             |
| Multi Res Hi Rise           | • | -           | •          |             | ,      | •         | •     | •      | •         | •  | -    | -         | -    | -    | •      | •        |              |           |                       | -          | -          | -         | -   | -            | •         | •    | •           | •   | •    | •   |          |     | •       | •   | •   | •  | •    | •    | •    | •   | -        | •   | •            | _ (          |              |       | -     |             |
| Hotels/Motels               | • | -           | •          |             | ,      | •         | •     | •      | •         | •  | •    | •         | •    | •    | •      | •        |              |           |                       |            | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   |          | •   | •            |              |              |       | •     |             |
| Shops                       | • | -           | -          |             |        | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | -          | -         | •   | •            | -         | •    | •           | •   | •    |     | . •      |     | -       | -   | -   | -  | -    | -    | -    | -   | •        | •   | •            | •            |              |       | •     |             |
| Cinemas                     | - | -           | -          |             |        | -         | •     | •      | -         | •  | -    | -         | -    | -    | -      | -        |              |           |                       |            | -          | -         | -   | -            | -         | -    | -           | •   | -    | •   |          |     | •       | •   | •   | -  | -    | -    | -    | -   | _        | •   | •            | _ (          |              |       | -     |             |
| Office Building - High Rise | - | -           | -          | •           | ,      | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        | . •          |           |                       |            | -          | -         | -   | -            | •         | -    | -           | •   | •    |     | . •      |     | •       | •   | •   | -  | -    | -    | -    | -   | •        | •   | •            | _ (          |              |       | -     |             |
| Office Building - Low Rise  | • | -           | -          |             | ,      | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        | . •          |           |                       |            | -          | -         | -   | -            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | -  | -    | -    | -    | -   | -        | •   | •            |              |              |       | •     |             |
| Factory                     | • | -           | -          |             | ,      | -         | -     | •      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | •          | -         | -   | -            | -         | •    | •           | •   | •    |     | . •      |     | -       | -   | -   | -  | -    | -    | -    | -   | -        | -   | -            | _ (          |              |       | -     |             |
| Fire Tunnel                 | - | -           | -          | -           |        | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | -          | -         | -   | -            | -         | -    | -           | -   | -    |     |          |     | -       | -   | -   | -  | -    | -    | -    | -   | -        | -   | -            |              |              |       | -     |             |
| Institutional Building      | • | -           | •          |             | ,      | •         | •     | •      | •         | •  | •    | •         | •    | •    | •      | •        |              |           |                       | -          | •          | -         | •   | •            | -         | •    | •           | •   | •    | •   |          | -   | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            | - (          |              |       | •     |             |
| Warehouse                   | • | -           | -          |             | ,      | -         | -     | •      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | •          | -         | -   | -            | -         | -    | -           | •   | •    |     |          |     | -       | -   | -   | -  | -    | -    | -    | -   | -        | -   | •            | _ (          | • -          |       | -     |             |
| Sports Stadiums             | • | -           | -          | -           |        | -         | -     | -      | -         | -  | -    | -         | -    | -    | -      | -        |              |           |                       |            | -          | -         | -   | -            | -         | -    | -           | -   | -    |     |          |     | -       | -   | -   | -  | -    | -    | -    | -   | •        | •   | •            | _ (          | • -          |       | -     |             |
| Hospital                    | • | -           | •          |             | ,      | •         | •     | •      | •         |    | -    | -         | -    | -    | •      | •        |              |           |                       |            | -          | -         | •   | •            | •         | •    | •           | •   | •    |     |          |     | •       | •   | •   | •  | •    | •    | •    | •   | •        | •   | •            |              |              |       | •     |             |
|                             |   |             |            |             |        |           |       |        |           |    |      |           |      |      | L.     | _ L      | ۲<br>۲       |           |                       |            |            |           |     |              |           |      |             |     |      |     |          |     |         |     |     |    |      |      |      |     |          |     |              |              |              |       |       |             |
|                             |   | _ا          | AT.        | ا ا         |        | 2         | SS    |        | LÌ        | ST | 25TP | 50TP      | 25SP | 50SP | 20100  | SOIWE    | SUIVVRF      | TIS CEL   | را ⊾                  | ς \<br>7F  | 5   E      |           | TBV | SBV          | SP        |      | MF          |     | F)   | CFA | کا ر     | 2   | 00      | CSP | CHS | WP | /PB  | WPL  | SWP  | IWP | PCS      | PCC | PSC          |              | PSB<br>PSBC  | SBT   | PTB   | FTB<br>FT0  |
|                             |   |             |            | - 0         | ر<br>ا |           | S     |        | E         | S  | 5    | 27        | 7    | í 21 | Ω<br>I | _<br>ت ک | ο ·          | ) L       | ი   >                 | ς<br>Σ   Υ | ) <u>i</u> | . 0       |     |              | S         | ≥    | 2           | ပ   | 0    | 0   | 2 ر      | 2 د | )<br> - |     |     |    | 5    | >    | S    |     | <u> </u> | ₫   | <u>σ</u>   α | <u>a</u>   a | <u>τ</u>   σ | -   ۵ | -   4 | ·           |
|                             |   | Stud        |            | 7           | nn l   | eg        |       |        |           | 3  |      | ⊗         |      |      |        |          | =            | [ ]       | η ±                   | <u> </u>   | . @        |           | 3   | eel          | S         |      |             |     |      |     |          |     | 3       |     |     |    |      |      |      |     |          |     |              |              |              |       |       |             |
|                             |   | Timber Stud |            | Ctool Ctild | ر<br>ا | Staggered | _<br> | D Stud | Twin Stud |    |      | PartiwaⅡ® |      |      |        | Intkwall | 110/W +J0 40 | Olidit wa | Stuurius<br>Vantshaft | Subfloor   | -ireclad®  | OuteRwall |     | Brick Veneer | Spandrels | 2000 | ividsUIII y |     |      |     |          |     | D-Span" |     |     |    |      |      |      |     |          |     | Columns      |              |              | Beams |       | Fire Tunnel |
|                             |   | Ţ           |            | 7           | 216    | Sta       | Str   |        | _≥        |    |      | Par       |      |      | ,      |          | 3            | 5         |                       |            | Fig.       |           | 3   | E .          | Spa       | 2    | >           |     |      |     |          |     |         |     |     |    |      |      |      |     |          |     | 00           |              |              | Be    |       | Fire        |

| B   System Index |            |             |                       |     |          | Sele         | ctor+         | PLASTE           | RBOARD S                   | SYSTEMS     |                            |  |
|------------------|------------|-------------|-----------------------|-----|----------|--------------|---------------|------------------|----------------------------|-------------|----------------------------|--|
|                  |            |             |                       |     | sistance |              | Nom           | Acoustic Ratings |                            |             |                            |  |
|                  |            |             | Approx<br>Pbd<br>Mass |     |          | Stud<br>Size | Wall<br>Width | Nil Ins          | sulation                   | With In     | sulation                   |  |
| Layout           | System Ref | Description | (kg/m²)               | FRL | Basis    | (mm)         | (mm)          | $R_{\rm W}$      | $R_{\rm W}$ + $C_{\rm tr}$ | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ |  |

#### Walls Lined One Side - Timber Framed



System **T13** illustrated

| T10  | 1x10mm Std Core pbd to one side of stud  | 6.8  | Nil                | NA                   | Any stud | 10 + stud | 28 | 25 | NA | NA |
|------|------------------------------------------|------|--------------------|----------------------|----------|-----------|----|----|----|----|
| T13  | 1x13mm Std Core pbd to one side of stud  | 8.6  | Nil                | NA                   | Any stud | 13 + stud | 28 | 26 | NA | NA |
| T13A | 1x13mm Soundstop pbd to one side of stud | 11.2 | Nil                | NA                   | Any stud | 13 + stud | 30 | 28 | NA | NA |
| T16F | 1x16mm Firestop pbd to one side of stud  | 13.0 | -/30/30            | FCO-1658<br>FCO-0568 | Any stud | 16 + stud | 30 | 28 | NA | NA |
| T32F | 2x16mm Firestop pbd to one side of stud  | 26.0 | 60/60/60<br>Iso    | SI95                 | Any stud | 32 + stud | 34 | 31 | NA | NA |
| T39F | 3x13mm Firestop pbd to one side of stud  | 31.5 | 90/90/90<br>Iso    | FCO-2423             | Any stud | 39 + stud | 37 | 34 | NA | NA |
| T48F | 3x16mm Firestop pbd to one side of stud  | 39.0 | 120/120/120<br>Iso | FSV0538              | Any stud | 48 + stud | 38 | 35 | NA | NA |

#### Walls Lined One Side - Steel Framed



System **S13** illustrated

| S10  | 1x10mm Std Core pbd to one side of stud  | 6.8  | Nil                | NA                   | Any stud | 10 + stud | 28 | 25 | NA | NA |
|------|------------------------------------------|------|--------------------|----------------------|----------|-----------|----|----|----|----|
| S13  | 1x13mm Std Core pbd to one side of stud  | 8.6  | Nil                | NA                   | Any stud | 13 + stud | 28 | 26 | NA | NA |
| S13A | 1x13mm Soundstop pbd to one side of stud | 11.2 | Nil                | NA                   | Any stud | 13 + stud | 30 | 28 | NA | NA |
| S16F | 1x16mm Firestop pbd to one side of stud  | 13.0 | -/30/30            | FCO-0568<br>FCO-1658 | Any stud | 16 + stud | 30 | 28 | NA | NA |
| S32F | 2x16mm Firestop pbd to one side of stud  | 26.0 | 60/60/60<br>Iso    | FCO-0037<br>FCO-1763 | Any stud | 32 + stud | 34 | 31 | NA | NA |
| S39F | 3x13mm Firestop pbd to one side of stud  | 31.5 | 90/90/90<br>Iso    | FCO-2423             | Any stud | 39 + stud | 37 | 35 | NA | NA |
| S48F | 3x16mm Firestop pbd to one side of stud  | 39.0 | 120/120/120<br>Iso | FSV 0538             | Any stud | 48 + stud | 38 | 36 | NA | NA |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

#### **Walls Lined Both Sides - Timber Framed**



System T1313 illustrated

| T1010   | 1x10mm Std Core pbd to each side                                  | 13.6 | -/20/20          | WFRA C91556                | 70x45 | 90  | 33 | 38 | 28 | 50G11, 50P14 |
|---------|-------------------------------------------------------------------|------|------------------|----------------------------|-------|-----|----|----|----|--------------|
|         | of stud                                                           |      | 15/15/15         | WFRA C91559                | 90x35 | 110 | 34 | 38 | 29 | 50G11, 50P14 |
| T1010A  | 1x10mm Soundstop pbd to each                                      | 16.4 | Nil              | NA                         | 70x45 | 90  | 35 | 39 | 31 | 50G11, 50P14 |
|         | side of stud                                                      |      |                  |                            | 90x35 | 110 | 35 | 39 | 31 | 50G11, 50P14 |
| TR1010A | 1x10mm Soundstop pbd to one side                                  | 16.4 | Nil              | NA                         | 70x45 | 103 | 39 | 45 | 32 | 70G14, 75P14 |
|         | of stud<br>RC and 1x10mm Soundstop pbd to<br>other side           |      |                  |                            | 90x35 | 123 | 39 | 45 | 32 | 70G14, 75P14 |
| T1313   | 1x13mm Std Core pbd to each side                                  | 17.2 | -/30/30          | WFRA C91557                | 70x45 | 96  | 35 | 39 | 31 | 50G11, 50P14 |
|         | of stud                                                           |      | 20/20/20         | WFRA C91552                | 90x35 | 116 | 35 | 39 | 31 | 50G11, 50P14 |
| T1313A  | 1x13mm Soundstop pbd to each                                      | 22.4 | Nil              | NA                         | 70x45 | 96  | 36 | 41 | 33 | 50G11, 50P14 |
|         | side of stud                                                      |      |                  |                            | 90x35 | 116 | 37 | 41 | 33 | 50G11, 50P14 |
| T1313F  | 1x13mm Firestop pbd to each side                                  | 21.0 | -/60/60          | FCO-2393                   | 70x45 | 96  | 36 | 40 | 32 | 50G11, 50P14 |
|         | of stud                                                           |      | 30/30/30         | WFRA 460081<br>WFRA C91550 | 90x35 | 116 | 37 | 40 | 32 | 50G11, 50P14 |
| TR1313A | 1x13mm Soundstop to one side of                                   | 22.4 | Nil              | NA                         | 70x35 | 109 | 39 | 47 | 34 | 70G14, 75P14 |
|         | stud<br>RC and 1x13mm Soundstop pbd to<br>other side              |      |                  |                            | 90x35 | 129 | 40 | 48 | 35 | 70G14, 75P14 |
| T1616F  | 1x16mm Firestop pbd to each side                                  | 26.0 | -/60/60          | WFRA C91202                | 70x45 | 102 | 37 | 41 | 33 | 50G11, 50P14 |
|         | of stud                                                           |      | 60/60/60<br>Cf11 | FCO-0619<br>FCO-0626       | 90x35 | 122 | 38 | 42 | 34 | 50G11, 50P14 |
| TF1616F | 1x16mm Firestop pbd to one side of stud                           | 26.0 | 60/60/60         | FCO-0619                   | 70x45 | 130 | 42 | 50 | 42 | 70G14, 70P14 |
|         | 1x16mm Firestop pbd to other side of stud on 28mm furring channel |      |                  |                            | 90x35 | 150 | 43 | 51 | 43 | 90G14        |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |        |             |             |           |        | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTE                   | MS         |
|------------------|--------|-------------|-------------|-----------|--------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |        |             | Approx      | Fire Resi | stance |              | Nom           |           | Acou        | ıstic Rating               | js         |
|                  | System |             | Pbd<br>Mass |           |        | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | nsulation                  | Insulation |
| Layout           | Ref    | Description | (kg/m²)     | FRL       | Basis  | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

#### » Walls Lined Both Sides - Timber Framed



System **T2626** illustrated

|             | <u> </u>                                                                                                                                              |      |          |             |                |     |    |    |    |                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-------------|----------------|-----|----|----|----|----------------------|
| TR1616F     | 1x16mm Firestop to one side of stud<br>RC and 1x16mm Firestop pbd to                                                                                  | 26.0 | 60/60/60 | FCO-0619    | 70x35          | 115 | 39 | 46 | 34 | 50G11, 50P14         |
|             | other side                                                                                                                                            |      |          |             | 90x35          | 135 | 39 | 46 | 34 | 50G11, 50P14         |
|             |                                                                                                                                                       |      |          |             | 100x38<br>(HW) | 145 | 40 | 48 | 35 | R2.5 GW<br>wall batt |
| TR1616F10   | 1x16mm Firestop pbd to each side                                                                                                                      | 32.8 | 60/60/60 | FCO-0619    | 70x35          | 125 | 42 | 48 | 39 | 50G11, 50P14         |
|             | of stud Additional layer of 10mm Std Core pbd to one side Lining on double layer side is on resilient channel.                                        |      |          |             | 90x35          | 145 | 43 | 49 | 40 | 50G11, 50P14         |
| T2020       | 2x10mm Std Core pbd to each side                                                                                                                      | 27.2 | -/30/30  | WFRA C91558 | 70x45          | 110 | 39 | 43 | 35 | 50G11, 50P14         |
|             | of stud                                                                                                                                               |      |          |             | 90x35          | 130 | 41 | 45 | 39 | 90G14, 90P14         |
| T2020A      | 2x10mm Soundstop pbd to each                                                                                                                          | 32.8 | Nil      | NA          | 70x45          | 110 | 43 | 45 | 40 | 50G11, 50P14         |
|             | side of stud                                                                                                                                          |      |          |             | 90x35          | 130 | 43 | 46 | 40 | 50G11, 50P14         |
| TR26A10     | CinemaZone Bronze system                                                                                                                              | 29.2 | Nil      | NA          | 70x45          | 119 | 39 | 45 | 37 | 70G14, 75P14         |
|             | 1x10mm Std Core pbd to one side<br>RC and 2x13mm Soundstop pbd to<br>other side                                                                       |      |          |             | 90x35          | 139 | 39 | 45 | 37 | 70G14, 75P14         |
| TF26(13)A10 | CinemaZone Silver retrofit system                                                                                                                     | 40.4 | Nil      | NA          | 70x45          | 151 | 49 | 55 | 47 | 70G14, 75P14         |
|             | 2x13mm Soundstop pbd on resiliently mounted furring channel to one side 1x13mm Soundstop pbd between studs plus 1x10mm Std Core pbd to the other side |      |          |             | 90x35          | 171 | 49 | 55 | 47 | 70G14, 75P14         |
| T2626       | 2x13mm Std Core pbd to each side                                                                                                                      | 34.4 | -/30/30  | WFRA C91558 | 70x45          | 122 | 43 | 44 | 39 | 50G11, 50P14         |
|             | of stud                                                                                                                                               |      |          |             | 90x35          | 142 | 43 | 45 | 39 | 50G11, 50P14         |
| T2626F      | 2x13mm Firestop pbd to each side                                                                                                                      | 42.0 | 90/90/90 | FCO-2564    | 70x45          | 122 | 45 | 46 | 41 | 50G11, 50P14         |
|             | of stud                                                                                                                                               |      | Cf11     | 91/103      | 90x35          | 142 | 45 | 46 | 41 | 50G11, 50P14         |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

#### » Walls Lined Both Sides - Timber Framed



System TF39(26)A10 illustrated

| TR2626A     | 2x13mm Soundstop pbd to one side                                                                  | 44.8 | Nil         | NA       | 70x45 | 135 | 48 | 56 | 48 | 70G14, 75P14  |
|-------------|---------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-----|----|----|----|---------------|
|             | of stud<br>RC and 2x13mm Soundstop pbd to<br>other side                                           |      |             |          | 90x35 | 155 | 48 | 56 | 48 | 70G14, 75P14  |
| TR2626F     | 2x13mm Firestop pbd to one side                                                                   | 42.0 | 90/90/90    | FCO-2564 | 70x45 | 135 | 48 | 54 | 46 | 50G14, 50P14, |
|             | of stud<br>RC and 2x13mm Firestop pbd to<br>other side                                            |      |             |          | 90x35 | 155 | 48 | 54 | 46 | 50G14, 50P14, |
| T3232F      | 2x16mm Firestop pbd to each side                                                                  | 52.0 | 120/120/120 | FCO-2564 | 70x45 | 134 | 43 | 46 | 40 | 50G11, 50P14  |
|             | of stud                                                                                           |      | Cf15        |          | 90x35 | 154 | 43 | 46 | 40 | 50G11, 50P14  |
| TR3232F     | 2x16mm Firestop pbd to one side                                                                   | 52.0 | 120/120/120 | FCO-2564 | 70x35 | 147 | 48 | 56 | 47 | 50G11, 50P14  |
|             | of stud<br>RC and 2x16mm Firestop pbd to<br>other side                                            |      |             |          | 90x35 | 167 | 49 | 57 | 49 | 50G11, 50P14  |
| TF39(26)A10 | CinemaZone Gold retrofit system<br>3x13mm Soundstop pbd on<br>resiliently mounted furring channel | 62.8 | Nil         | NA       | 70x45 | 164 | 57 | 65 | 57 | 90G14, 100P14 |
|             | to one side 2x13mm Soundstop pbd between studs plus 1x10mm Std Core pbd to the other              |      |             |          | 90x35 | 184 | 57 | 65 | 57 | 90G14, 100P14 |

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF   | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou    | ıstic Rating               | JS         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I  | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

## Walls Lined Both Sides - Steel Framed



System S1313 illustrated

| _ | 01001  | Tantou                           |      |          |             |     |     |    |    |    |               |
|---|--------|----------------------------------|------|----------|-------------|-----|-----|----|----|----|---------------|
|   | S1010  | 1x10mm Std Core pbd to each side | 13.6 | -/20/20  | WRFA F91815 | 51  | 71  | 34 | 38 | 28 | 50G11, 50P14  |
|   |        | of stud                          |      |          |             | 64  | 84  | 34 | 40 | 29 | 50G11, 50P14  |
|   |        |                                  |      |          |             | 76  | 96  | 34 | 40 | 29 | 70G11, 75P14  |
|   |        |                                  |      |          |             | 92  | 112 | 35 | 41 | 30 | 90G11, 100P14 |
|   |        |                                  |      |          |             | 150 | 170 | 34 | 40 | 29 | 90G11, 100P14 |
|   | S1010A | 1x10mm Soundstop pbd to each     | 16.4 | Nil      | NA          | 51  | 71  | 35 | 42 | 32 | 50G11, 50P14  |
|   |        | side of stud                     |      |          |             | 64  | 84  | 36 | 43 | 32 | 50G11, 50P14  |
|   |        |                                  |      |          |             | 76  | 96  | 36 | 45 | 33 | 70G11, 75P14  |
|   |        |                                  |      |          |             | 92  | 112 | 37 | 46 | 34 | 90G11, 100P14 |
|   |        |                                  |      |          |             | 150 | 170 | 36 | 44 | 33 | 90G11, 100P14 |
|   | S1313  | 1x13mm Std Core pbd to each side | 17.2 | -/30/30  | WFRA C91553 | 51  | 77  | 35 | 42 | 31 | 50G11, 50P14  |
|   |        | of stud                          |      | 20/20/20 | WFRA C91555 | 64  | 90  | 35 | 43 | 31 | 50G11, 50P14  |
|   |        |                                  |      |          |             | 76  | 102 | 36 | 44 | 33 | 70G11, 75P14  |
|   |        |                                  |      |          |             | 92  | 118 | 37 | 45 | 34 | 90G11, 100P14 |
|   |        |                                  |      |          |             | 150 | 176 | 36 | 44 | 33 | 90G11, 100P14 |
|   | S1313A | 1x13mm Soundstop pbd to each     | 22.4 | Nil      | NA          | 51  | 77  | 36 | 44 | 33 | 50G11, 50P14  |
|   |        | side of stud                     |      |          |             | 64  | 90  | 37 | 45 | 34 | 50G11, 50P14  |
|   |        |                                  |      |          |             | 76  | 102 | 38 | 49 | 36 | 75G14         |
|   |        |                                  |      |          |             | 92  | 118 | 38 | 49 | 37 | 70G11, 100P14 |
|   |        |                                  |      |          |             | 150 | 176 | 37 | 48 | 36 | 90G11, 100P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |         |          | Sele         | ctor+         | PLASTE    | RBOAF   | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|---------|----------|--------------|---------------|-----------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Re | sistance |              | Nom           |           | Acou    | ıstic Rating               | JS         |
|                  |            |             | Pbd<br>Mass |         |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I  | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL     | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

#### » Walls Lined Both Sides - Steel Framed



System S1326F illustrated

| C1212F   | 1u12mm Finanton whalte each side             | 21.0 | 20/20/20            | FCO 104F             | Г1  | 77  | 27 | 42 | 22 | F0C11 F0D14       |
|----------|----------------------------------------------|------|---------------------|----------------------|-----|-----|----|----|----|-------------------|
| S1313F   | 1x13mm Firestop pbd to each side of stud     | 21.0 | 30/30/30<br>-/60/60 | FCO-1045<br>FCO-1360 | 51  | 77  | 36 | 43 | 32 | 50G11, 50P14      |
|          | o. staa                                      |      | 7 007 00            | 100 1000             | 64  | 90  | 37 | 44 | 33 | 50G11, 50P14      |
|          |                                              |      |                     |                      | 76  | 102 | 37 | 45 | 34 | 70G11, 75P14      |
|          |                                              |      |                     |                      | 76  | 102 | 37 | 47 | 34 | 75G14             |
|          |                                              |      |                     |                      | 92  | 118 | 37 | 46 | 35 | 90G11, 100P14     |
|          |                                              |      |                     |                      | 92  | 118 | 37 | 44 | 32 | 85P9              |
|          |                                              |      |                     |                      | 150 | 176 | 36 | 43 | 31 | 90G11, 100P14     |
| S1326F   | 1x13mm Firestop pbd to each side             | 31.5 | -/90/90             | SI 515               | 51  | 90  | 40 | 49 | 37 | 50G11, 50P14      |
|          | of stud Additional 1x13mm Firestop pbd to    |      | 30/30/30            | FCO-1360<br>FCO-1045 | 64  | 103 | 40 | 49 | 37 | 50G11, 50P14      |
|          | one side only                                |      |                     | 100 1043             | 76  | 115 | 42 | 50 | 39 | 70G11, 75P14      |
|          |                                              |      |                     |                      | 92  | 131 | 43 | 51 | 40 | 90G11, 75P14      |
|          |                                              |      |                     |                      | 150 | 189 | 42 | 50 | 38 | 90G11, 100P14     |
| S1616F   | 1x16mm Firestop pbd to each side             | 26.0 | -/90/90             | FCO- 1360            | 51  | 83  | 37 | 45 | 34 | 50G11, 50P14      |
|          | of stud                                      |      | 60/60/60            | FCO-1045             | 64  | 96  | 38 | 45 | 35 | 50G11, 50P14      |
|          |                                              |      |                     |                      | 76  | 108 | 39 | 46 | 37 | 70G11, 75P14      |
|          |                                              |      |                     | T2489n               | 92  | 124 | 40 | 46 | 38 | 90G11, 100P14     |
|          |                                              |      |                     |                      | 92  | 124 | 40 | 46 | 37 | R1.5 GW wall batt |
|          |                                              |      |                     |                      | 150 | 182 | 39 | 44 | 36 | 90G11, 100P14     |
| S1616F13 | 1x16mm Firestop pbd to each side             | 34.6 | -/90/90             | FCO- 1360            | 51  | 96  | 42 | 49 | 37 | 50G11, 50P14      |
|          | of stud<br>Additional 1x13mm Std Core pbd to |      |                     |                      | 64  | 109 | 43 | 50 | 38 | 50G11, 50P14      |
|          | one side only                                |      |                     |                      | 76  | 121 | 43 | 50 | 39 | 70G11, 75P14      |
|          |                                              |      |                     |                      | 92  | 137 | 44 | 52 | 42 | 90G11, 100P14     |
|          |                                              |      |                     |                      | 150 | 195 | 42 | 49 | 40 | 90G11, 100P14     |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou        | ıstic Rating               | js         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

#### » Walls Lined Both Sides - Steel Framed



System **S2626** illustrated

| S2020  | 2x10mm Std Core pbd to each side | 27.2 | -/30/30   | WFRA C91554        | 51  | 91  | 40 | 47 | 36 | 50G11, 50P14  |
|--------|----------------------------------|------|-----------|--------------------|-----|-----|----|----|----|---------------|
|        | of stud                          |      |           |                    | 64  | 104 | 41 | 48 | 36 | 50G11, 50P14  |
|        |                                  |      |           |                    | 76  | 116 | 41 | 49 | 37 | 70G11, 75P14  |
|        |                                  |      |           |                    | 92  | 132 | 42 | 50 | 39 | 90G11, 100P14 |
|        |                                  |      |           |                    | 150 | 190 | 41 | 48 | 38 | 90G11, 100P14 |
| S2020A | 2x10mm Soundstop pbd to each     | 32.8 | Nil       | NA                 | 51  | 91  | 44 | 50 | 39 | 50G11, 50P14  |
|        | side of stud                     |      |           |                    | 64  | 104 | 45 | 51 | 40 | 50G11, 50P14  |
|        |                                  |      |           |                    | 76  | 116 | 45 | 53 | 42 | 70G11, 75P14  |
|        |                                  |      |           |                    | 92  | 132 | 46 | 53 | 43 | 90G14, 100P14 |
|        |                                  |      |           |                    | 150 | 190 | 45 | 51 | 42 | 90G14, 100P14 |
| S2626  | 2x13mm Std Core pbd to each side | 34.4 | -/30/30   | WFRA C91554        | 51  | 103 | 43 | 49 | 40 | 50G11, 50P14  |
|        | of stud                          |      |           |                    | 64  | 116 | 44 | 50 | 41 | 50G11, 50P14  |
|        |                                  |      |           |                    | 76  | 128 | 44 | 52 | 42 | 70G11, 75P14  |
|        |                                  |      |           |                    | 92  | 144 | 45 | 52 | 43 | 90G11, 100P14 |
|        |                                  |      |           |                    | 150 | 202 | 44 | 50 | 42 | 90G11, 100P14 |
| S2626A | 2x13mm Soundstop pbd to each     | 44.8 | Nil       | NA                 | 51  | 103 | 46 | 52 | 42 | 50G11, 50P14  |
|        | side of stud                     |      |           |                    | 64  | 116 | 47 | 52 | 44 | 50G11, 50P14  |
|        |                                  |      |           |                    | 76  | 128 | 47 | 54 | 45 | 70G11, 75P14  |
|        |                                  |      |           |                    | 92  | 144 | 48 | 54 | 46 | 90G11, 100P14 |
|        |                                  |      |           |                    | 150 | 202 | 47 | 52 | 45 | 90G11, 100P14 |
| S2626F | 2x13mm Firestop pbd to each side | 42.0 | -/120/120 | SI 720             | 51  | 103 | 45 | 51 | 42 | 50G11, 50P14  |
|        | of stud                          |      | 90/90/90  | SI 474<br>FCO-1360 | 64  | 116 | 46 | 52 | 43 | 50G11, 50P14  |
|        |                                  |      |           | FCO-1045           | 76  | 128 | 46 | 53 | 44 | 70G11, 75P14  |
|        |                                  |      |           | WFRA C91228        | 92  | 144 | 47 | 53 | 45 | 90G11, 100P14 |
|        |                                  |      |           |                    | 150 | 202 | 46 | 51 | 44 | 90G11, 100P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |         |          | Sele         | ector+        | PLASTE    | RBOAF   | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|---------|----------|--------------|---------------|-----------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Re | sistance |              | Nom           |           | Acou    | ustic Rating               | S          |
|                  |            |             | Pbd<br>Mass |         |          | Stud<br>Size | Wall<br>Width | Nil Insul | With    | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL     | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

## » Walls Lined Both Sides - Steel Framed



System S3232F illustrated



System S4141F illustrated

| S3232F | 2x16mm Firestop pbd to each side                                                                              | 52.0  | -/180/180                              | SI 1453              | 51                | 115 | 47 | 52 | 43 | 50G11, 50P14   |
|--------|---------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|----------------------|-------------------|-----|----|----|----|----------------|
|        | of stud                                                                                                       |       | 120/120/120                            | FCO-1360<br>FCO-1045 | 64                | 128 | 48 | 53 | 44 | 50G11, 50P14   |
|        |                                                                                                               |       |                                        | WFRA C91228          | 76                | 140 | 49 | 53 | 45 | 70G11, 75P14   |
|        |                                                                                                               |       |                                        |                      | 92                | 156 | 49 | 53 | 45 | 90G11, 100P14  |
|        |                                                                                                               |       |                                        |                      | 150               | 214 | 48 | 51 | 43 | 90G11, 100P14  |
| S4141F | LinerSTRIP LS1 <sup>®</sup> , 1x25 Shaftliner <sup>™</sup><br>& 1x16 Firestop <sup>™</sup> each side of frame | 67.0  | -/180/180<br>Both sides                | FCO-2440             | Refer<br>Engineer | 150 | 47 | 51 | 46 | 100G14, 100P14 |
|        |                                                                                                               | 67.0  | -/180/180<br>Both sides                | FCO-2440             | Refer<br>Engineer | 200 | 48 | 52 | 47 | 100G14, 100P14 |
| S6666F | LinerSTRIP LS1 <sup>®</sup> , 2x25 Shaftliner <sup>™</sup><br>& 1x16 Firestop <sup>™</sup> each side of frame | 108.5 | 180/180/180<br>-/240/240<br>Both sides | FCO-2440             | Refer<br>Engineer | 150 | 50 | 55 | 50 | 100G14, 100P14 |
|        |                                                                                                               | 108.5 | 180/180/180<br>-/240/240<br>Both sides | FCO-2440             | Refer<br>Engineer | 200 | 50 | 55 | 50 | 100G14, 100P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF   | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou    | ıstic Rating               | JS         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I  | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

# **Timber Framed Staggered Stud Systems**



System TS1313A illustrated

| TS1010A   | 1x10mm Soundstop pbd to each side of frame      | 16.4 | Nil                 | NA       | 70x45,<br>90pl | 110 | 36 | 46 | 36 | 90G11, 75P14  |
|-----------|-------------------------------------------------|------|---------------------|----------|----------------|-----|----|----|----|---------------|
|           |                                                 |      |                     |          | 90x35, 120pl   | 140 | 37 | 48 | 38 | 90G11, 100P14 |
| TS1313A   | 1x13mm Soundstop pbd to each side of frame      | 22.4 | Nil                 | NA       | 70x45,<br>90pl | 116 | 39 | 50 | 39 | 75G14         |
|           |                                                 |      |                     |          | 90x35, 120pl   | 146 | 40 | 50 | 40 | 90G14, 100P14 |
| TS1313F   | 1x13mm Firestop pbd to each side of frame       | 21.0 | -/60/60             | FCO-2393 | 70x45,<br>90pl | 116 | 39 | 45 | 36 | 70G11, 50P14  |
|           |                                                 |      |                     |          | 90x35, 120pl   | 146 | 40 | 46 | 38 | 70G11, 50P14  |
| TS1313F10 | 1x13mm Firestop pbd to each side of frame       | 27.8 | -/60/60             | FCO-2393 | 70x45,<br>90pl | 126 | 41 | 48 | 39 | 50G11, 50P14  |
|           | Additional 1x10mm Std Core pbd to one side only |      |                     |          | 90x35, 120pl   | 156 | 42 | 49 | 41 | 50G11, 50P14  |
| TS1616F   | 1x16mm Firestop pbd to each side of frame       | 26.0 | 60/60/60<br>Cf11    | FCO-0626 | 70x45,<br>90pl | 122 | 40 | 46 | 38 | 50G11, 50P14  |
|           |                                                 |      |                     |          | 90x35, 120pl   | 152 | 41 | 46 | 39 | 50G11, 50P14  |
| TS2020A   | 2x10mm Soundstop pbd to each side of frame      | 32.8 | Nil                 | NA       | 70x45,<br>90pl | 130 | 46 | 53 | 45 | 70G14, 75P14  |
|           |                                                 |      |                     |          | 90x35, 120pl   | 160 | 47 | 54 | 46 | 90G14, 100P14 |
| TS2626F   | 2x13mm Firestop pbd to each side of frame       | 42.0 | 90/90/90<br>Cf11    | FCO-2564 | 70x45,<br>90pl | 142 | 47 | 52 | 47 | 50G11, 50P14  |
|           |                                                 |      |                     |          | 90x35, 120pl   | 172 | 48 | 57 | 50 | 90G14, 100P14 |
| TS3232F   | 2x16mm Firestop pbd to each side of frame       | 52.0 | 120/120/120<br>Cf14 | FCO-2564 | 70x45,<br>90pl | 154 | 49 | 53 | 48 | 50G11, 50P14  |
|           |                                                 |      |                     |          | 90x35, 120pl   | 184 | 50 | 58 | 51 | 90G14, 100P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

# **Steel Framed Staggered Stud Systems**



System SS16F1316F13 illustrated

| SS1010A      | 1x10mm Soundstop pbd to each                                     | 16.4 | Nil     | NA                            | (92 track)  | 112 | 38 | 46 | 36 | 70G11, 75P14  |
|--------------|------------------------------------------------------------------|------|---------|-------------------------------|-------------|-----|----|----|----|---------------|
|              | side of frame                                                    |      |         |                               | (150 track) | 170 | 39 | 48 | 39 | 90G14, 100P14 |
| SS1313A      | 1x13mm Soundstop pbd to each                                     | 22.4 | Nil     | NA                            | (92 track)  | 118 | 39 | 50 | 39 | 75G14         |
|              | side of frame                                                    |      |         |                               | (150 track) | 176 | 41 | 53 | 43 | 90G14, 100P14 |
| SS1313F      | 1x13mm Firestop pbd to each side of frame                        | 21.0 | -/60/60 | FR2539<br>99/1370<br>FCO-0512 | (92 track)  | 118 | 39 | 48 | 37 | 50G11, 50P14  |
|              |                                                                  |      |         |                               | (150 track) | 176 | 40 | 50 | 38 | 70G11, 50P14  |
| SS1313F13    | 1x13mm Firestop pbd to each side                                 | 29.6 | -/60/60 | FR2539                        | (92 track)  | 131 | 43 | 52 | 41 | 50G11, 50P14  |
|              | of frame<br>Additional layer of 13mm Std Core<br>pbd to one side |      |         | 99/1370<br>FCO-0512           | (150 track) | 189 | 45 | 54 | 45 | 50G11, 50P14  |
| SS1616F      | 1x16mm Firestop pbd to each side of frame                        | 26.0 | -/90/90 | FR2539<br>99/1370             | (92 track)  | 124 | 40 | 49 | 39 | 50G11, 50P14  |
|              |                                                                  |      |         | FCO-0512                      | (92 track)  | 124 | 40 | 52 | 44 | 75G14         |
|              |                                                                  |      |         |                               | (150 track) | 182 | 43 | 51 | 42 | 50G11, 50P14  |
| SS16F1316F13 | 1x16mm Firestop plus 1x13mm Std                                  | 43.2 | -/90/90 | FR2539                        | (92 track)  | 150 | 48 | 57 | 50 | 75P14         |
|              | Core pbd to each side of frame                                   |      |         | 99/1370<br>FCO-0512           | (150 track) | 208 | 51 | 58 | 50 | 70G11, 50P14  |
| SS2020A      | 2x10mm Soundstop pbd to each                                     | 32.8 | Nil     | NA                            | (92 track)  | 132 | 46 | 56 | 47 | 70G14, 75P14  |
|              | side of frame                                                    |      |         |                               | (150 track) | 190 | 48 | 57 | 49 | 90G14, 100P14 |
| SS2626A      | 2x13mm Soundstop pbd to each                                     | 44.8 | Nil     | NA                            | (92 track)  | 144 | 48 | 57 | 50 | 70G14, 75P14  |
|              | side of frame                                                    |      |         |                               | (150 track) | 202 | 51 | 58 | 52 | 90G14, 100P14 |

| B   System Index |            |             |             |          | Sele     | ctor+        | PLASTE        | RBOAF     | RD SYSTE | MS                         |            |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|----------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou     | ustic Rating               | IS         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I   | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$  | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

# » Steel Framed Staggered Stud Systems




System SS2626F illustrated

| <br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9,3131113                                 |      |           |                     |             |     |    |    |    |              |
|---------------------------------------------|-------------------------------------------|------|-----------|---------------------|-------------|-----|----|----|----|--------------|
| SS2626F                                     |                                           | 42.0 | -/120/120 | FR2539              | (92 track)  | 144 | 49 | 55 | 48 | 50P14        |
|                                             | of frame                                  |      |           | 99/1370<br>FCO-0512 | (92 track)  | 144 | 49 | 56 | 48 | 50G14        |
|                                             |                                           |      |           | 100 0012            | (92 track)  | 144 | 49 | 54 | 47 | 50P7         |
|                                             |                                           |      |           |                     | (92 track)  | 144 | 49 | 58 | 51 | 100P14       |
|                                             |                                           |      |           |                     | (150 track) | 202 | 50 | 57 | 49 | 50G11, 50P14 |
| SS3232F                                     | 2x16mm Firestop pbd to each side of frame | 52.0 | -/180/180 | FR2539<br>99/1370   | (92 track)  | 156 | 50 | 57 | 50 | 70G11, 50P14 |
|                                             |                                           |      |           | FCO-0512            | (92 track)  | 156 | 50 | 59 | 54 | 100P14       |
|                                             |                                           |      |           |                     | (150 track) | 214 | 52 | 58 | 51 | 70G11, 50P14 |

| B   System Index |            |             |             |          | Sele     | ctor+        | PLASTE        | RBOAF       | RD SYSTE    | MS                         |            |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-------------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |             | Acou        | ustic Rating               | js         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul   | With        | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{\rm W}$ | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

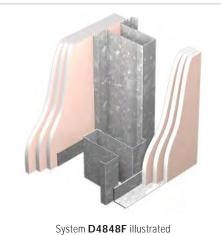
#### **D-Stud Walls**



System **D16F1316F13** illustrated

| D1010A      | 1.:10mm Coundatan abd to cook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/ / | NII     | NΙΛ      | (02 track)  | 110 | 20 | 4.4 | 27 | 70011 75014   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------|-------------|-----|----|-----|----|---------------|
| D1010A      | 1x10mm Soundstop pbd to each side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.4 | Nil     | NA       | (92 track)  | 112 | 38 | 44  | 36 | 70G11, 75P14  |
|             | side of mains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |          | (150 track) | 170 | 39 | 47  | 39 | 90G14, 100P14 |
| D1313A      | 1x13mm Soundstop pbd to each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.4 | Nil     | NA       | (92 track)  | 118 | 39 | 50  | 39 | 70G14, 75P14  |
|             | side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |          | (150 track) | 176 | 41 | 53  | 43 | 90G14, 100P14 |
| D1313F      | 1x13mm Firestop pbd to each side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.0 | -/30/30 | FCO-1485 | (92 track)  | 118 | 39 | 48  | 36 | 50G11, 50P14  |
|             | of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |          | (150 track) | 176 | 40 | 50  | 38 | 70G11, 50P14  |
| D1313F13    | 1x13mm Firestop pbd to each side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.6 | -/30/30 | FCO-1485 | (92 track)  | 131 | 43 | 52  | 41 | 50G11, 50P14  |
|             | of frame<br>Additional 13mm Std Core pbd to<br>one side only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |          | (150 track) | 189 | 45 | 54  | 45 | 50G11, 50P14  |
| D1616F      | 1x16mm Firestop pbd to each side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.0 | -/90/60 | FSV 0466 | (92 track)  | 124 | 40 | 49  | 40 | 50G14         |
|             | of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         | FC0-1485 | (92 track)  | 124 | 40 | 47  | 39 | 50P14         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |          | (150 track) | 182 | 43 | 51  | 42 | 70G11, 50P14  |
| D16F1316F13 | The state of the s | 43.2 | -/90/90 | FC0-1485 | (92 track)  | 150 | 48 | 57  | 50 | 70G14, 75P14  |
|             | Std Core pbd to each side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |         |          | (150 track) | 208 | 51 | 58  | 50 | 70G11, 50P14  |
| D2020A      | 2x10mm Soundstop pbd to each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.8 | Nil     | NA       | (92 track)  | 132 | 46 | 56  | 47 | 70G14, 75P14  |
|             | side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |          | (150 track) | 190 | 48 | 57  | 49 | 90G14, 100P14 |
| D2626A      | 2x13mm Soundstop pbd to each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.8 | Nil     | NA       | (92 track)  | 144 | 48 | 57  | 50 | 70G14, 75P14  |
|             | side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |          | (150 track) | 202 | 51 | 58  | 52 | 90G14, 100P14 |
| D2626F      | 2x13mm Firestop pbd to each side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.0 | -/90/90 | FCO-1485 | (92 track)  | 144 | 48 | 56  | 46 | 50G11, 50P14  |
|             | of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |          | (92 track)  | 144 | 48 | 58  | 51 | 90G14, 100P14 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |          | (150 track) | 202 | 50 | 57  | 49 | 50G11, 50P14  |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system


| Approx  | Fire Res | sistance |      | Nom   | Acoustic Ratings                 |             |                               |            |  |  |  |
|---------|----------|----------|------|-------|----------------------------------|-------------|-------------------------------|------------|--|--|--|
| Pbd     |          |          | Stud | Wall  | Nil Insul                        | \/\/ith I   | nsulation                     |            |  |  |  |
| Mass    |          |          | Size | Width | TVII IIISUI                      | VVICITI     | Hadiation                     | Insulation |  |  |  |
| (kg/m²) | FRL      | Basis    | (mm) | (mm)  | $R_{\scriptscriptstyle 	ext{W}}$ | $R_{\rm W}$ | $R_{\text{vv}}+C_{\text{tr}}$ | Type       |  |  |  |

#### » D-Stud Walls



| D3232F |          | 52.0 | -/120/120 | FCO-1485 | (92 track)  | 156 | 50 | 57 | 50 | 70G11, 50P14  |
|--------|----------|------|-----------|----------|-------------|-----|----|----|----|---------------|
|        | of frame |      |           |          | (92 track)  | 156 | 50 | 59 | 54 | 90G14, 100P14 |
|        |          |      |           |          | (150 track) | 214 | 52 | 58 | 51 | 70G11, 50P14  |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |
|        |          |      |           |          |             |     |    |    |    |               |

#### **D-Stud Cinema Walls**



| D4848F | 3x16mm Firestop pbd to each side of frame                                               | 78.0  | -/180/180 | FSV 1073 | as required | 500 | 63 | 74 | - | 200G14, 200P25 |
|--------|-----------------------------------------------------------------------------------------|-------|-----------|----------|-------------|-----|----|----|---|----------------|
| D4864F | 3x16mm Firestop pbd layers to one<br>side of frame<br>4x16mm Firestop pbd to other side | 91.0  | -/180/180 | FSV 1073 | as required | 500 | 64 | 76 | - | 200G14, 200P25 |
| D6464F | 4x16mm Firestop pbd to each side<br>of frame                                            | 104.0 | -/180/180 | FSV 1073 | as required | 500 | 64 | 77 | - | 200G14, 200P25 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

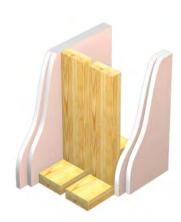
Description

| B   System Index |            |             |             |         |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTEI                    | MS         |
|------------------|------------|-------------|-------------|---------|----------|--------------|---------------|-----------|-------------|------------------------------|------------|
|                  |            |             | Approx      | Fire Re | sistance |              | Nom           |           | Acou        | ıstic Rating                 | S          |
|                  |            |             | Pbd<br>Mass |         |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | nsulation                    | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL     | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm w}$ +C <sub>tr</sub> | Туре       |

## **Timber Framed Twin Stud Systems**



System TT1313 illustrated


| TT1010       | 1x10mm Std Core pbd to each side              | 13.6 | Nil      | NA       | 70x45 | 185 | 35 | 43 | 31 | 50G11, 50P14   |
|--------------|-----------------------------------------------|------|----------|----------|-------|-----|----|----|----|----------------|
|              | of frame                                      |      |          |          | 90x35 | 225 | 36 | 45 | 34 | 50G11, 50P14   |
| TT1313       | 1x13mm Std Core pbd to each side              | 17.2 | Nil      | NA       | 70x45 | 191 | 38 | 49 | 38 | 50G11, 50P14   |
|              | of frame                                      |      |          |          | 90x35 | 231 | 39 | 49 | 39 | 50G11, 50P14   |
| TT1313A      | 1x13mm Soundstop pbd to each                  | 22.4 | Nil      | NA       | 70x45 | 191 | 42 | 55 | 45 | 90G14, 100P14  |
|              | side of frame                                 |      |          |          | 90x35 | 231 | 43 | 56 | 46 | 90G14, 100P14  |
| TT1313F      | 1x13mm Firestop pbd to each side              | 21.0 | -/60/60  | FCO-2393 | 70x45 | 191 | 41 | 51 | 41 | 70G11, 50P14   |
|              | of frame                                      |      |          |          | 90x35 | 231 | 42 | 52 | 42 | 70G11, 50P14   |
| TT1326F      | 1x13mm Firestop pbd to each side              | 31.5 | -/60/60  | FCO-2393 | 70x45 | 204 | 47 | 57 | 47 | 50G11, 50P14   |
|              | of frame<br>Additional layer of 13mm Firestop |      |          |          | 90x35 | 244 | 47 | 58 | 48 | 50G11, 50P14   |
|              | to one side only                              |      |          |          | 90x35 | 244 | 47 | 62 | 50 | 180G14, 200P14 |
| TT13F1313F13 | 1x13mm Firestop pbd plus 1x13mm               | 38.2 | -/60/60  | FCO-2393 | 70x45 | 217 | 50 | 63 | 52 | 50G11, 50P14   |
|              | Std Core pbd to each side of frame            |      |          |          | 90x35 | 257 | 51 | 64 | 53 | 50G11, 50P14   |
| TT1616F      | 1x16mm Firestop pbd to each side              | 26.0 | 60/60/60 | FCO-0626 | 70x45 | 197 | 44 | 54 | 44 | 50G11, 50P14   |
|              | of frame                                      |      |          |          | 90x35 | 237 | 45 | 55 | 46 | 50G11, 50P14   |
| TT16F1016F10 | 1x16mm Firestop pbd plus 1x10mm               | 39.6 | 60/60/60 | FCO-0626 | 70x45 | 217 | 51 | 63 | 53 | 50G11, 50P14   |
|              | Std Core pbd to each side of frame            |      |          |          | 90x35 | 257 | 52 | 64 | 54 | 50G11, 50P14   |
| TT2626A      | CinemaZone Gold system                        | 44.8 | Nil      | NA       | 70x45 | 217 | 53 | 65 | 55 | 90G14, 100P14  |
|              | 2x13mm Soundstop pbd to each side of frame    |      |          |          | 90x35 | 257 | 54 | 66 | 56 | 180G14, 200P14 |
| TT2626F      | 2x13mm Firestop pbd to each side              | 42.0 | 90/90/90 | FCO-2564 | 70x45 | 217 | 51 | 63 | 53 | 50G11, 50P14   |
|              | of frame                                      |      | Cf21     |          | 90x35 | 257 | 52 | 64 | 54 | 50G11, 50P14   |
| TT2929F      | 1x16mm + 1x13mm Firestop pbd to               | 47.0 | 90/90/90 | FCO-2564 | 70x45 | 223 | 52 | 65 | 54 | 50G11, 50P14   |
|              | both sides of frame                           |      | Cf10     |          | 90x35 | 263 | 53 | 65 | 55 | 50G11, 50P14   |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity, 150P14 => 75P14 installed in each stud cavity.

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou        | ustic Rating               | JS         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

## » Timber Framed Twin Stud Systems

TT3232F



System TT3232F

| 2x16mm Firestop pbd to each side of frame | 52.0 | 120/120/120<br>Cf10 | FCO-2564 | 70x45 | 229 | 54 | 66 | 56 | 50G11, 50P14 |
|-------------------------------------------|------|---------------------|----------|-------|-----|----|----|----|--------------|
|                                           |      |                     |          | 90x35 | 269 | 55 | 67 | 57 | 50G11, 50P14 |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |
|                                           |      |                     |          |       |     |    |    |    |              |

**B2** 

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

<sup>•</sup> Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity, 150P14 => 75P14 installed in each stud cavity.

| B   System Index |            |             |             |         |          | Sele         | ector+        | PLASTE    | RBOAF   | RD SYSTE                     | MS         |
|------------------|------------|-------------|-------------|---------|----------|--------------|---------------|-----------|---------|------------------------------|------------|
|                  |            |             | Approx      | Fire Re | sistance |              | Nom           |           | Acou    | ustic Rating                 | S          |
|                  |            |             | Pbd<br>Mass |         |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I  | Insulation                   | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL     | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | Туре       |

#### **Steel Framed Twin Stud Systems**



System ST1313 illustrated

| <b>Jyston</b> | 13                               |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|---------------|----------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| ST1010        | 1x10mm Std Core pbd to each side | 13.6                                              | Nil                                                                                                                                                          | NA                                                                                                                                                                                                                                      | 51                                                                                                                                                                                                                                                                 | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               | of frame                         |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                 | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 76                                                                                                                                                                                                                                                                 | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                 | 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
| ST1313        | 1x13mm Std Core pbd to each side | 17.2                                              | Nil                                                                                                                                                          | NA                                                                                                                                                                                                                                      | 51                                                                                                                                                                                                                                                                 | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               | of frame                         |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                 | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 76                                                                                                                                                                                                                                                                 | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                 | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50G11, 50P14   |
| ST1313A       | 1x13mm Soundstop pbd to each     | 22.4                                              | Nil                                                                                                                                                          | NA                                                                                                                                                                                                                                      | 51                                                                                                                                                                                                                                                                 | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90G14, 100P14  |
|               | side of frame                    |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                 | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90G14, 100P14  |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 76 203                                                                                                                                                                                                                                                             | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160G14, 150P14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                 | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180G14, 200P14 |
|               |                                  |                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180G14, 200P14 |
|               | ST1010<br>ST1313                 | ST1313  1x13mm Std Core pbd to each side of frame | ST1010  1x10mm Std Core pbd to each side of frame  13.6  ST1313  1x13mm Std Core pbd to each side of frame  17.2  ST1313A  1x13mm Soundstop pbd to each 22.4 | ST1010       1x10mm Std Core pbd to each side of frame       13.6       Nil         ST1313       1x13mm Std Core pbd to each side of frame       17.2       Nil         ST1313A       1x13mm Soundstop pbd to each       22.4       Nil | ST1010       1x10mm Std Core pbd to each side of frame       13.6       Nil       NA         ST1313       1x13mm Std Core pbd to each side of frame       17.2       Nil       NA         ST1313A       1x13mm Soundstop pbd to each       22.4       Nil       NA | ST1010         1x10mm Std Core pbd to each side of frame         13.6         Nil         NA         51           64         76         92         150           ST1313         1x13mm Std Core pbd to each side of frame         17.2         Nil         NA         51           64         76         92         150           ST1313A         1x13mm Soundstop pbd to each side of frame         22.4         Nil         NA         51           64         76         92         64         76         92 | ST1010         1x10mm Std Core pbd to each side of frame         13.6         Nil         NA         51         147           64         173         76         197         92         229           150         345           ST1313         1x13mm Std Core pbd to each side of frame         17.2         Nil         NA         51         153           64         179         76         203         92         235           150         351         351         153           ST1313A         1x13mm Soundstop pbd to each side of frame         22.4         Nil         NA         51         153           64         179         76         203         64         179           76         203         92         235 | ST1010         1x10mm Std Core pbd to each side of frame         13.6         Nil         NA         51         147         35           64         173         36         76         197         36           76         197         36         92         229         37           150         345         38           ST1313         1x13mm Std Core pbd to each side of frame         17.2         Nil         NA         51         153         37           64         179         38         76         203         39         92         235         39           150         351         42         42         150         351         42           ST1313A         1x13mm Soundstop pbd to each side of frame         22.4         Nil         NA         51         153         41           64         179         42         42         42         43         44         44           76         203         43         43         43         43         43         43 | ST1010         1x10mm Std Core pbd to each side of frame         13.6         Nil         NA         51         147         35         44           64         173         36         45           76         197         36         45           92         229         37         46           150         345         38         46           ST1313         1x13mm Std Core pbd to each side of frame         17.2         Nil         NA         51         153         37         47           64         179         38         48         76         203         39         49           92         235         39         49         150         351         42         51           ST1313A         1x13mm Soundstop pbd to each side of frame         22.4         Nil         NA         51         153         41         53           64         179         42         54         76         203         43         55           92         235         43         57 | ST1010         |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity, 150P14 => 75P14 installed in each stud cavity.

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTEI                    | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|------------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou        | ustic Rating                 | IS         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | Insulation                   | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm w}$ +C <sub>tr</sub> | Type       |

#### » Steel Framed Twin Stud Systems



System ST1326F illustrated

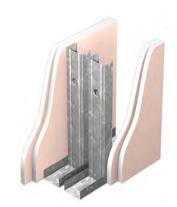
| ST1313F   | 1x13mm Firestop pbd to each side              | 21.0               | -/60/60 | FR2539            | 51  | 153 | 40 | 50 | 39 | 70G11, 50P14   |
|-----------|-----------------------------------------------|--------------------|---------|-------------------|-----|-----|----|----|----|----------------|
| 3113131   | of frame                                      | 21.0               | 700700  | 99/1370           | 64  | 179 | 41 | 51 | 40 | 70G11, 50P14   |
|           |                                               |                    |         |                   |     |     |    | 51 |    |                |
|           |                                               |                    |         |                   | 64  | 250 | 43 |    | 41 | 50P14          |
|           |                                               |                    |         |                   | 64  | 250 | 43 | 54 | 46 | 100P14         |
|           |                                               |                    |         |                   | 64  | 240 | 42 | 57 | 45 | 200P14         |
|           |                                               |                    |         |                   | 64  | 300 | 43 | 54 | 43 | 100P14         |
|           |                                               |                    |         |                   | 76  | 203 | 42 | 51 | 41 | 70G11, 50P14   |
|           |                                               |                    |         |                   | 92  | 235 | 42 | 52 | 43 | 50G11, 50P14   |
|           |                                               |                    |         |                   | 150 | 351 | 45 | 53 | 45 | 50G11, 50P14   |
| ST1313F13 | 1x13mm Firestop pbd to each side              | 29.6               | -/60/60 | FR2539            | 51  | 166 | 44 | 56 | 45 | 50G11, 50P14   |
|           | of frame<br>Additional 1x13mm Std Core pbd to | nm Std Core pbd to |         | 99/1370           | 64  | 193 | 45 | 57 | 46 | 50G11, 50P14   |
|           | one side only                                 |                    |         |                   | 64  | 253 | 46 | 56 | 47 | 50P14          |
|           |                                               |                    |         |                   | 64  | 253 | 46 | 60 | 50 | 200P14         |
|           |                                               |                    |         |                   | 76  | 216 | 46 | 57 | 47 | 50G11, 50P14   |
|           |                                               |                    |         |                   | 92  | 248 | 46 | 58 | 48 | 50G11, 50P14   |
| ST1326F   | 1x13mm Firestop pbd to each side              | 31.5               | -/90/90 | SI 515            | 51  | 166 | 45 | 56 | 45 | 50G11, 50P14   |
|           | of frame<br>Additional 1x13mm Firestop pbd to |                    |         | FR2539<br>99/1370 | 64  | 192 | 46 | 57 | 46 | 50G11, 50P14   |
|           | one side only                                 |                    |         | 77/13/0           | 76  | 216 | 47 | 57 | 47 | 50G11, 50P14   |
|           |                                               |                    |         |                   | 92  | 248 | 47 | 58 | 48 | 50G11, 50P14   |
|           |                                               |                    |         |                   | 92  | 253 | 47 | 60 | 50 | 180G14, 200P14 |
|           |                                               |                    |         |                   | 150 | 364 | 50 | 59 | 51 | 70G11, 50P14   |

**B2** 

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system • Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity.

### » Steel Framed Twin Stud Systems




System ST1616F illustrated

| ST1616F      | 1x16mm Firestop pbd to each side              | 26.0 | -/90/90 | FR2539  | 51  | 159 | 42       | 53       | 42       | 50G11, 50P14     |
|--------------|-----------------------------------------------|------|---------|---------|-----|-----|----------|----------|----------|------------------|
|              | of frame                                      |      |         | 99/1370 | 64  | 185 | 43       | 54       | 44       | 50G11, 50P14     |
|              |                                               |      |         |         | 64  | 180 | 43<br>43 | 58<br>59 | 49<br>50 | 100G14<br>150G14 |
|              |                                               |      |         |         | 76  | 209 | 44       | 54       | 45       | 50G11, 50P14     |
|              |                                               |      |         |         | 76  | 204 | 44<br>44 | 58<br>60 | 48<br>52 | 100G14<br>150G14 |
|              |                                               |      |         |         | 92  | 241 | 45       | 54       | 46       | 50G11, 50P14     |
|              |                                               |      |         |         | 150 | 357 | 47       | 55       | 48       | 50G11, 50P14     |
| ST1616F10    | 1x16mm Firestop pbd to each side              | 32.8 | -/90/90 | FR2539  | 51  | 169 | 45       | 56       | 48       | 90G14, 100P14    |
|              | of frame<br>Additional 1x10mm Std Core pbd to |      |         | 99/1370 | 64  | 195 | 46       | 57       | 50       | 140G14, 150P14   |
|              | one side only                                 |      |         |         | 64  | 190 | 46       | 56       | 49       | 100P14           |
|              |                                               |      |         |         | 76  | 219 | 47       | 57       | 50       | 140G14, 150P14   |
|              |                                               |      |         |         | 92  | 251 | 48       | 58       | 51       | 140G14, 150P14   |
|              |                                               |      |         |         | 150 | 367 | 50       | 59       | 53       | 140G14, 150P14   |
| ST16F1016F10 | 1x16mm Firestop pbd plus 1x10mm               | 39.6 | -/90/90 | FR2539  | 51  | 179 | 49       | 62       | 52       | 50G11, 50P14     |
|              | Std Core pbd to each side of frame            |      |         | 99/1370 | 64  | 205 | 50       | 63       | 52       | 50G11, 50P14     |
|              |                                               |      |         |         | 76  | 229 | 51       | 63       | 53       | 50G11, 50P14     |
|              |                                               |      |         |         | 92  | 261 | 52       | 64       | 54       | 50G11, 50P14     |
|              |                                               |      |         |         | 150 | 377 | 55       | 64       | 56       | 50G11, 50P14     |
| ST2626A      | CinemaZone Gold system                        | 44.8 | Nil     | NA      | 51  | 179 | 50       | 67       | 55       | 90G14, 100P14    |
|              | 2x13mm Soundstop pbd to each side of frame    |      |         |         | 64  | 205 | 51       | 68       | 56       | 90G14, 100P14    |
|              | Side of Hallic                                |      |         |         | 76  | 229 | 52       | 68       | 57       | 140G14, 150P14   |
|              |                                               |      |         |         | 92  | 261 | 53       | 69       | 58       | 180G14, 200P14   |
|              |                                               |      |         |         | 150 | 377 | 56       | 70       | 60       | 180G14, 200P14   |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system • Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity.

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF   | RD SYSTE                     | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|---------|------------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acou    | ıstic Rating                 | S          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I  | nsulation                    | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | Type       |

## » Steel Framed Twin Stud Systems



System ST3232F illustrated



System **ST4141F** illustrated

| Both sides   Engineer   400   59   73   64   180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · | iu Dysic | 1113                                           |       |            |          |          |     |    |    |    |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|------------------------------------------------|-------|------------|----------|----------|-----|----|----|----|----------------|
| ST3232F   2x16mm Firestop pbd to each side of frame   ST4141F   LinerSTRIPLS1®, 1x25 Shaftliner™ each side of frame   ST44848F   3x16 mr Eirestop pbd to each side of frame   ST4848F     |   | ST2626F  |                                                | 42.0  | -/120/120  |          | 51       | 179 | 49 | 62 | 52 | 50G11, 50P14   |
| ST3232F   2x16mm Firestop pbd to each side of frame   52.0   -/180/180   FR2539   99/1370   64   217   53   66   55   50G11, 50P14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |          | of frame                                       |       |            | 99/1370  | 64       | 205 | 50 | 63 | 52 | 50G11, 50P14   |
| ST3232F   2x16mm Firestop pbd to each side of frame   52.0   -/180/180   FR2539   99/1370   64   217   53   66   55   50G11, 50P14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |          |                                                |       |            |          | 76       | 229 | 51 | 63 | 52 | 50G11, 50P14   |
| ST3232F   2x16mm Firestop pbd to each side of frame   52.0   -/180/180   FR2539   99/1370   64   217   53   66   55   50G11, 50P14     76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          |                                                |       |            |          | 92       | 261 | 52 | 64 | 54 | 50G11, 50P14   |
| of frame    Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |                                                |       |            |          | 150      | 377 | 55 | 64 | 56 | 50G11, 50P14   |
| ST4141F   LinerSTRIP LS1®, 1x25 Shaftliner™ each side of frame   67.0   -/180/180   Both sides   FCO-2440   Refer Engineer   64   249   59   72   62   50G11, 50P14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | ST3232F  |                                                | 52.0  | -/180/180  |          | 51       | 197 | 52 | 65 | 54 | 50G11, 50P14   |
| ST4141F   LinerSTRIPLS1®, 1x25 Shaftliner™ & 67.0 Both sides   FCO-2440 Both sides   FCO-2440   Refer Engineer   A50   FCO-2440   Refer Engineer   A50      |   |          | of frame                                       |       |            | 99/13/0  | 64       | 217 | 53 | 66 | 55 | 50G11, 50P14   |
| ST4141F   LinerSTRIP LS1®, 1x25 Shaftliner™ & 67.0   Both sides   FCO-2440   Refer Engineer   A00   59   73   64   180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          | 76       | 241 | 54 | 66 | 56 | 50G11, 50P14   |
| ST4141F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |          |                                                |       |            |          | 92       | 273 | 55 | 67 | 58 | 50G11, 50P14   |
| ST4848F   ST4666F   LinerSTRIP LS1®, 2x25 Shaftliner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |                                                |       |            |          | 150      | 389 | 58 | 67 | 60 | 50G11, 50P14   |
| each side of frame    ST4848F   3x16mm Firestop pbd to each side of frame   Texas   T |   | ST4141F  | LinerSTRIP LS1 <sup>®</sup> , 1x25 Shaftliner™ | 67.0  |            | FCO-2440 |          | 350 | 58 | 72 | 63 | 180G14, 200P14 |
| ST4848F     3x16mm Firestop pbd to each side of frame     78.0     -/180/180     FCO-2440     51     223     58     71     59     50G11, 50P14       64     249     59     72     60     50G11, 50P14       76     273     59     72     62     50G11, 50P14       92     305     60     72     62     50G11, 50P14       150     421     62     73     65     50G11, 50P14       8 1x16 Firestop™ each side of frame     108.5     180/180/180 FCO-2440 Both sides     Refer Engineer     350     63     76     67     180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |                                                |       | Both sides |          | Engineer | 400 | 59 | 73 | 64 | 180G14, 200P14 |
| of frame    64   249   59   72   60   50G11, 50P14     76   273   59   72   62   50G11, 50P14     92   305   60   72   62   50G11, 50P14     92   305   60   72   62   50G11, 50P14     150   421   62   73   65   50G11, 50P14     160   170   180   180G14, 200P     170   180   180G14, 200P     170   180   180G14, 200P     170   180   180G14, 200P     180   180   180G14, 200P     180   180   180   180   180   180     180   180   180   180   180   180     180   180   180   180   180     180   180   180   180   180     180   180   180   180   180     180   180   180   180   180     180   180   180   180   180     180   180   180   180     180   180   180   180     180   180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180   180     180   180     180   180   180     180   180   180     180   180   180     180   180     180   180   180     180   180   180     180   180     180   180   180     180   180   180     180   180   180     180   180     180   180   180     180   180   180     180   180     180   180   180     180   180   180     180   180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     180   180     18 |   |          |                                                |       |            |          |          | 450 | 60 | 74 | 65 | 180G14, 200P14 |
| ST6666F   LinerSTRIP LS1®, 2x25 Shaftliner™ 8 108.5   180/180/180   FCO-2440   Refer 8 1x16 Firestop™ each side of frame   108.5   180/180/180   Both sides   Engineer   400 64 77 68 180G14, 200P   1   |   | ST4848F  |                                                | 78.0  | -/180/180  | FCO-2440 | 51       | 223 | 58 | 71 | 59 | 50G11, 50P14   |
| 92 305 60 72 62 50G11, 50P14    ST6666F   LinerSTRIP LS1®, 2x25 Shaftliner™ 8 108.5   180/180/180   FCO-2440   Refer 8 2x16 Firestop™ each side of frame   800F14, 200P   2x16   |   |          | of frame                                       |       |            |          | 64       | 249 | 59 | 72 | 60 | 50G11, 50P14   |
| ST6666F     LinerSTRIP LS1®, 2x25 Shaftliner™ each side of frame     108.5     180/180/180 FCO-2440 Both sides     FCO-2440 FCO-2440 Both sides     Refer Engineer     350 63 76 67 180G14, 200P       400 64 77 68 180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |                                                |       |            |          | 76       | 273 | 59 | 72 | 62 | 50G11, 50P14   |
| ST6666F     LinerSTRIP LS1®, 2x25 Shaftliner™     108.5     180/180/180 -/240/240 Both sides     FCO-2440 Final From Engineer     Refer Engineer     350 63 76 67 180G14, 200P       400 64 77 68 180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |                                                |       |            |          | 92       | 305 | 60 | 72 | 62 | 50G11, 50P14   |
| & 1x16 Firestop™ each side of frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |                                                |       |            |          | 150      | 421 | 62 | 73 | 65 | 50G11, 50P14   |
| each side of frame  Both sides  400 04 77 08 180G14, 200P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | ST6666F  | LinerSTRIP LS1 <sup>®</sup> , 2x25 Shaftliner™ | 108.5 |            | FCO-2440 |          | 350 | 63 | 76 | 67 | 180G14, 200P14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          | Engineer | 400 | 64 | 77 | 68 | 180G14, 200P14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          |          | 450 | 65 | 78 | 69 | 180G14, 200P14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          |          |     |    |    |    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          |          |     |    |    |    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                                |       |            |          |          |     |    |    |    |                |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

<sup>•</sup> Referenced insulation thicknesses greater than 100mm is the sum of two halves installed in each stud cavity eg 140G14 => 70G14 installed in each stud cavity. 150P14 => 75P14 installed in each stud cavity.

# **Separating Wall Systems - Partiwall®**



System 25TP1313A illustrated

| 25TP1010  | 1x25mm Shaftliner panel<br>1x10mm Std Core pbd to each side | 34.1 | 60/60/60<br>Cf NA | FSV 0381<br>FCO-2256 | 70x45 | 225 | 35 | 51 | 40 | OS R2 GW wall<br>batt, 100P14       |
|-----------|-------------------------------------------------------------|------|-------------------|----------------------|-------|-----|----|----|----|-------------------------------------|
|           | of timber frame                                             |      |                   |                      | 70x45 | 225 | 35 | 54 | 42 | BS R2 GW wall<br>batt, 100P14       |
|           |                                                             |      |                   |                      | 90x35 | 265 | 36 | 55 | 41 | OS R2 GW wall<br>batt, 100P14       |
|           |                                                             |      |                   |                      | 90x35 | 265 | 36 | 60 | 42 | BS R2.5 GW<br>wall batt             |
| 25TP1010A | 1x25mm Shaftliner panel<br>1x10mm Soundstop pbd to each     | 36.9 | 60/60/60<br>Cf NA | FCO-2256             | 70x45 | 225 | 36 | 57 | 46 | OS R2 GW wall batt                  |
|           | side of timber frame                                        |      |                   |                      | 70x45 | 225 | 36 | 60 | 49 | BS R2 GW wall batt                  |
|           |                                                             |      |                   |                      | 90x35 | 265 | 37 | 59 | 48 | OS 115mm thick<br>R2.5 ceiling batt |
|           |                                                             |      |                   |                      | 90x35 | 265 | 37 | 63 | 53 | BS 115mm thick<br>R2.5 ceiling batt |
| 25TP1313A | 1x25mm Shaftliner panel<br>1x13mm Soundstop pbd to each     | 42.9 | 60/60/60<br>Cf NA | FCO-2256             | 70x45 | 231 | 37 | 59 | 46 | OS R2 GW wall<br>batt, 100P14       |
|           | side of timber frame                                        |      |                   |                      | 70x45 | 231 | 37 | 62 | 47 | BS R2 GW wall<br>batt               |
|           |                                                             |      |                   |                      | 90x35 | 271 | 38 | 61 | 48 | OS R2 GW wall<br>batt, 100P14       |
|           |                                                             |      |                   |                      | 90x35 | 271 | 38 | 62 | 50 | BS R2 GW wall<br>batt               |
|           |                                                             |      |                   |                      | 90x35 | 271 | 38 | 62 | 50 | BS 100P14                           |
|           |                                                             |      |                   |                      | 90x35 | 271 | 38 | 57 | 44 | BS 85P9                             |
| 25TP2020  | 1x25mm Shaftliner panel<br>2x10mm Std Core pbd to each side | 47.7 | 60/60/60<br>Cf NA | FCO-2256             | 70x45 | 245 | 38 | 64 | 50 | BS R2 GW wall<br>batt, 100P14       |
|           | of timber frame                                             |      |                   |                      | 90x35 | 285 | 38 | 65 | 51 | BS R1.5 GW wall batt                |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTE                     | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|------------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acol        | ustic Rating                 | js         |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With        | Insulation                   | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ +C <sub>tr</sub> | Туре       |

# » Separating Wall Systems - Partiwall®

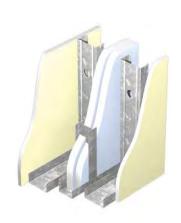


System 25SP1313A illustrated

| 25SP1010  | 1x25mm Shaftliner panel<br>1x10mm Std Core pbd to each side | 34.1 | 60/60/60<br>Cf NA | FCO-1945<br>FCO-2256 76 237 35 5 |    | 51  | 40 | OS R2 GW wall<br>batt, 100P14 |    |                                     |    |                               |
|-----------|-------------------------------------------------------------|------|-------------------|----------------------------------|----|-----|----|-------------------------------|----|-------------------------------------|----|-------------------------------|
|           | of steel frame                                              |      |                   |                                  | 76 | 237 | 35 | 54                            | 43 | BS R2 GW wall<br>batt, 100P14       |    |                               |
|           |                                                             |      |                   |                                  | 92 | 269 | 36 | 55                            | 41 | OS R2 GW wall<br>batt, 100P14       |    |                               |
|           |                                                             |      |                   |                                  | 92 | 269 | 36 | 58                            | 44 | BS R2 GW wall<br>batt, 100P14       |    |                               |
| 25SP1010A | 1x25mm Shaftliner panel<br>1x10mm Soundstop pbd to each     | 36.9 | 60/60/60<br>Cf NA | FCO-2256                         | 76 | 237 | 36 | 57                            | 46 | OS R2 GW wall batt                  |    |                               |
|           | side of steel frame                                         |      |                   |                                  | 76 | 237 | 36 | 60                            | 49 | BS R2 GW wall batt                  |    |                               |
|           |                                                             |      |                   |                                  | 92 | 269 | 37 | 59                            | 48 | OS 115mm thick<br>R2.5 ceiling batt |    |                               |
|           |                                                             |      |                   |                                  | 92 | 269 | 37 | 63                            | 53 | BS 115mm thick<br>R2.5 ceiling batt |    |                               |
| 25SP1313A | 1x25mm Shaftliner panel<br>1x13mm Soundstop pbd to each     | 42.9 | 60/60/60<br>Cf NA | FCO-2256                         | 76 | 243 | 37 | 59                            | 46 | OS R2 GW wall<br>batt, 100P14       |    |                               |
|           | side of steel frame                                         |      |                   |                                  | 76 | 243 | 37 | 62                            | 47 | BS R2 GW wall<br>batt, 100P14       |    |                               |
|           |                                                             |      |                   |                                  | 92 | 275 | 38 | 61                            | 48 | OS R2 GW wall<br>batt, 100P14       |    |                               |
|           |                                                             |      |                   |                                  |    |     | 92 | 275                           | 38 | 62                                  | 50 | BS R2 GW wall<br>batt, 100P14 |
|           |                                                             |      |                   |                                  | 92 | 275 | 38 | 57                            | 44 | BS 85P9                             |    |                               |
| 25SP2020  | 1x25mm Shaftliner panel<br>2x10mm Std Core pbd to each side | 47.7 | 60/60/60<br>Cf NA | FCO-2256                         | 76 | 257 | 38 | 64                            | 50 | BS R2 GW wall<br>batt, 100P14       |    |                               |
|           | of steel frame                                              |      |                   |                                  | 92 | 289 | 38 | 65                            | 51 | BS R1.5 GW wall                     |    |                               |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

## » Separating Wall Systems - Partiwall®




System 50TP1313A illustrated

|   | 13 - 1 a | tivvaii                                                                          |      |                   |                      |       |     |    |    |                               |                               |
|---|----------|----------------------------------------------------------------------------------|------|-------------------|----------------------|-------|-----|----|----|-------------------------------|-------------------------------|
| 5 | 0TP1010  | 2x25mm Shaftliner panels<br>1x10mm Std Core pbd to each side                     | 54.6 | 90/90/90<br>Cf NA |                      |       | 38  | 54 | 41 | OS R2 GW wall<br>batt, 100P14 |                               |
|   |          | of timber frame                                                                  |      |                   | FCO-2256             | 70x45 | 250 | 38 | 57 | 44                            | BS R2 GW wall<br>batt, 100P14 |
|   |          |                                                                                  |      |                   |                      | 90x35 | 290 | 39 | 59 | 46                            | OS R2 GW wall<br>batt, 100P14 |
|   |          |                                                                                  |      |                   |                      | 90x35 | 290 | 39 | 62 | 49                            | BS R2 GW wall<br>batt, 100P14 |
| 5 |          | 2x25mm Shaftliner panels<br>1x13mm Soundstop pbd to each<br>side of timber frame | 63.4 | 90/90/90<br>Cf NA | FCO-1446<br>FCO-2016 | 70x45 | 256 | 40 | 62 | 50                            | OS R2 GW wall<br>batt, 100P14 |
|   |          |                                                                                  |      |                   | FCO-2256             | 70x45 | 256 | 40 | 65 | 53                            | BS R2 GW wall<br>batt, 100P14 |
|   |          |                                                                                  |      |                   |                      | 90x35 | 296 | 41 | 65 | 53                            | OS R2 GW wall<br>batt, 100P14 |
|   |          |                                                                                  |      |                   |                      | 90x35 | 296 | 41 | 68 | 56                            | BS R2 GW wall<br>batt, 100P14 |

| B   System Index |            |             |             |          | Sele  | ctor+        | PLASTE           | RBOAF     | RD SYSTE | MS                         |            |
|------------------|------------|-------------|-------------|----------|-------|--------------|------------------|-----------|----------|----------------------------|------------|
|                  |            | Approx      | Fire Res    | sistance |       | Nom          | Acoustic Ratings |           |          |                            |            |
|                  |            |             | Pbd<br>Mass |          |       | Stud<br>Size | Wall<br>Width    | Nil Insul | With I   | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis | (mm)         | (mm)             | $R_{W}$   | $R_{W}$  | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

# » Separating Wall Systems - Partiwall®



System **50SP1313A** illustrated

| 01110     |                                                              |      |                   |          |    |     |    |    |    |                               |
|-----------|--------------------------------------------------------------|------|-------------------|----------|----|-----|----|----|----|-------------------------------|
| 50SP1010  | 2x25mm Shaftliner panels<br>1x10mm Std Core pbd to each side | 54.6 | 90/90/90<br>Cf NA | FCO-2256 | 76 | 262 | 38 | 54 | 41 | OS R2 GW wall<br>batt, 100P14 |
|           | of steel frame                                               |      |                   |          | 76 | 262 | 38 | 57 | 44 | BS R2 GW wall<br>batt, 100P14 |
|           |                                                              |      |                   |          | 92 | 294 | 39 | 59 | 46 | OS R2 GW wall<br>batt, 100P14 |
|           |                                                              |      |                   |          | 92 | 294 | 39 | 62 | 49 | BS R2 GW wall<br>batt, 100P14 |
| 50SP1313A | 2x25mm Shaftliner panels<br>1x13mm Soundstop pbd to each     | 63.4 | 90/90/90<br>Cf NA | FCO-2256 | 76 | 268 | 40 | 62 | 50 | OS R2 GW wall<br>batt, 100P14 |
|           | side of steel frame                                          |      |                   |          | 76 | 268 | 40 | 65 | 53 | BS R2 GW wall<br>batt, 100P14 |
|           |                                                              |      |                   |          | 92 | 300 | 41 | 65 | 53 | OS R2 GW wall<br>batt, 100P14 |
|           |                                                              |      |                   |          | 92 | 300 | 41 | 68 | 56 | BS R2 GW wall<br>batt, 100P14 |

## Separating Wall Systems - IntRwall® (formerly Eurekawall®) Max height 3000mm (max pressure 0.35kPa)

50IW13



| 2x25mm Shaftliner™ panels<br>1x13mm Std Core pbd to one side<br>I studs @ 600mm ctrs   | 64 | 51IS55 | 49.6 | Nil                  | 35 | 32<br>CSIRO TL402-abco | Nil<br>d | 0.57 |
|----------------------------------------------------------------------------------------|----|--------|------|----------------------|----|------------------------|----------|------|
| 50IW13F                                                                                |    |        |      |                      |    |                        |          |      |
| 2x25mm Shaftliner™ panels<br>1x13mm Firestop™ pbd to one side.<br>I studs @ 600mm ctrs | 64 | 51IS55 | 51.5 | -/60/60<br>FCO 2660  | 36 | 33                     | Nil      | 0.56 |
| *Increase FRL with IBS rod in Deflection Head Track                                    |    |        |      | -/90/90*<br>FSV 0883 |    |                        |          |      |
| *Increase FRL with IBS rod in Deflection Head Track                                    |    |        |      |                      |    |                        |          |      |



|                                                                           | 1   | 1                      | 1    |     |    |    | I .            |              |
|---------------------------------------------------------------------------|-----|------------------------|------|-----|----|----|----------------|--------------|
| 50IWS13                                                                   |     |                        |      |     |    |    |                |              |
| 2x25mm Shaftliner™ panels                                                 | 148 | 51IS55 +               | 49.6 | Nil | 45 | _  | Nil            | 0.72         |
| 1x13mm Std Core pbd to other side on separate steel stud frame            |     | min 64mm steel<br>stud |      |     | 50 | 40 | 50G14 or 50P14 | 2.02 or 1.80 |
| I studs @ 600mm ctrs max<br>C studs @ 600mm ctrs max – engineer to design |     |                        |      |     |    |    |                |              |
| (min 20mm gap between I studs and C studs)                                |     |                        |      |     |    |    |                |              |
|                                                                           |     |                        |      |     |    |    |                |              |
|                                                                           |     |                        |      |     |    |    |                |              |
|                                                                           |     |                        |      |     |    |    |                |              |
|                                                                           |     |                        |      |     |    |    |                |              |

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems. • Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m²). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m²).

| B   System Index |                  |              |              |               |       | Selector    | + PLASTE                     | RBOARD SYSTI | EMS                  |
|------------------|------------------|--------------|--------------|---------------|-------|-------------|------------------------------|--------------|----------------------|
|                  |                  |              |              |               | Fire  |             | Acoustic Ratio               | ngs          |                      |
|                  |                  | Nom<br>Width | Stud<br>Size | Pbd<br>Weight | FRL   |             | D 0                          |              | Total<br>R Value     |
| Layout           | System Reference | (mm)         | (mm)         | (kg/m²)       | Basis | $R_{\rm W}$ | $R_{\rm w}$ +C <sub>tr</sub> | Insulation   | (m <sup>2</sup> K/W) |

# $\textbf{\textit{y} Separating Wall Systems - IntRwall}^{\texttt{@}} \ (\textit{formerly Eurekawall}^{\texttt{@}}) \ \textit{\textit{Max height 3000mm (max pressure 0.35kPa)}}$



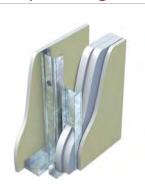


| 50IW13S13                                                                                                                                                                                                                                   |     |                                    |      |                                                  |                |                              |                                |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|--------------------------------------------------|----------------|------------------------------|--------------------------------|------------------------------|
| 2x25mm Shaftliner ™ panels 1x13mm Std Core pbd to one side 1x13mm Std Core pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max - engineer to design (min 20mm gap between I studs and C studs) | 161 | 51IS55 +<br>min 64mm steel<br>stud | 58.2 | -/60/60<br>FCO-2660                              | 45<br>50<br>55 | 42<br>48<br>CSIRO TL402-abcd | Nil<br>50G14 or 50P14<br>75G14 | 0.83<br>2.12 or 1.90<br>2.72 |
| *Increase FRL with IBS rod in Deflection Head Track                                                                                                                                                                                         |     |                                    |      | -/90/90*<br>WFRA 40970<br>WFRA 41038<br>FCO-2256 |                |                              |                                |                              |
| As above (min 36mm gap between I studs and C studs)                                                                                                                                                                                         | 177 |                                    |      |                                                  | 47<br>58       | <del></del><br>50            | Nil<br>90G16 or 100P14         | 0.83<br>3.22 or 2.77         |
| 50IW13FS13F                                                                                                                                                                                                                                 |     |                                    |      |                                                  |                |                              |                                |                              |
| 2x25mm Shaftliner™ panels<br>1x13mm Firestop™ pbd to one side<br>1x13mm Firestop™ pbd to other side on separate                                                                                                                             | 161 | 51IS55 +<br>min 64mm steel<br>stud | 62.0 | -/90/90<br>FCO-2660                              | 46<br>54       | <del></del><br>45            | Nil<br>75P9                    | 0.80<br>2.05                 |
| steel stud frame                                                                                                                                                                                                                            |     | Stud                               |      |                                                  |                | CSIRO TL418-abcd             |                                |                              |
| I studs @ 600mm ctrs max<br>C studs @ 600mm ctrs max — engineer to design<br>(min 20mm gap between I studs and C studs)                                                                                                                     |     |                                    |      |                                                  | 58             | 49                           | 75P14                          | 2.35                         |
| (IIIIII ZOIIIIII gap between 1 Stuus and C Stuus)                                                                                                                                                                                           |     |                                    |      |                                                  |                | CSIRO TL418-abcd             | <b> </b><br>                   |                              |
| *Increase FRL with IBS rod in Deflection Head Track                                                                                                                                                                                         |     |                                    |      | -/120/120*<br>FCO-2434                           |                |                              |                                |                              |
| As above (min 36mm gap between I studs and C studs)                                                                                                                                                                                         | 177 |                                    |      |                                                  | 47<br>58       | <del></del><br>50            | Nil<br>90G11 or 75P14          | 0.81<br>2.91 or 2.40         |

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems.
• Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

63.4

| <b>B</b>   System Index |                  |            |              |                |              | Selector- | + PLASTE                   | RBOARD SYSTE | EMS                |
|-------------------------|------------------|------------|--------------|----------------|--------------|-----------|----------------------------|--------------|--------------------|
|                         |                  |            |              |                | Fire         |           | Acoustic Ratir             | ngs          |                    |
|                         |                  | Nom        | Stud         | Pbd            |              |           |                            |              | Total              |
| Layout                  | System Reference | Width (mm) | Size<br>(mm) | Weight (kg/m²) | FRL<br>Basis | $R_{W}$   | $R_{\rm w}$ + $C_{\rm tr}$ | Insulation   | R Value<br>(m²K/W) |


51IS55 +

stud

min 64mm steel

161

## $\textbf{ » Separating Wall Systems - IntRwall}^{\texttt{@}} \ \ (\textit{formerly Eurekawall}^{\texttt{@}}) \ \ \textit{Max height 3000mm (max pressure 0.35kPa)}$



| 50IW13AS13A                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2x25mm Shaftliner™ panels 1x13mm Soundstop® pbd to one side 1x13mm Soundstop® pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 20mm gap between I studs and C studs) *Increase FRL with IBS rod in Deflection Head Track |
|                                                                                                                                                                                                                                                                                                    |



| 50IWFR10S13A                                                                                                                                                                 |     |                                    |      |                     |          |              |                                 |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|---------------------|----------|--------------|---------------------------------|--------------|
| 2x25mm Shaftliner™ panels 10mm Std Core pbd to one side on 13mm recessed face furring channels 1x13mm Soundstop® pbd to other side on separate                               | 200 | 51IS55 +<br>min 64mm steel<br>stud | 59.0 | -/60/60<br>FCO-2256 | 44<br>57 | <del></del>  | Nil<br>100P14<br>stud side only | 0.93<br>3.02 |
| steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max – engineer to design (min 49mm gap between I studs and C studs) IBS rod required in Deflection Head Track |     |                                    |      |                     | 57       | CSIRO TL439e | 90G16<br>stud side only         | 3.36         |
|                                                                                                                                                                              |     |                                    |      |                     |          |              |                                 |              |

-/60/60 FCO-2660

-/90/90\*

WFRA 40970

48

58

57

60

0.80

2.59 or 2.35

2.35

2.53

70G14 or 75P14

75P14

100P14

50

49

52

CSIRO TL418-fg

CSIRO TL439b

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems.

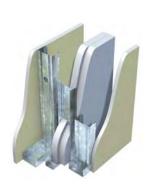
<sup>•</sup> Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), G (Glasswool), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

| B   System Index |                  |                      |                      |                          |              | Selector-   | + PLASTE                  | RBOARD SYSTI | EMS                         |
|------------------|------------------|----------------------|----------------------|--------------------------|--------------|-------------|---------------------------|--------------|-----------------------------|
|                  |                  |                      |                      |                          | Fire         |             | Acoustic Ratio            | ngs          |                             |
| Layout           | System Reference | Nom<br>Width<br>(mm) | Stud<br>Size<br>(mm) | Pbd<br>Weight<br>(kg/m²) | FRL<br>Basis | $R_{\sf W}$ | $R_{\rm w}$ + $C_{ m tr}$ | Insulation   | Total<br>R Value<br>(m²K/W) |



| 50IWF13S13                                                                                                                                                                                                                                                                                                               |     |                                    |      |                                  |          |                     |                                                                           |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|----------------------------------|----------|---------------------|---------------------------------------------------------------------------|----------------------|
| 2x25mm Shaftliner™ panels 1x13mm Std Core pbd to one side on 28mm furring channel 1x13mm Std Core pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max – engineer to design (min 20mm gap between I studs and C studs) *Increase FRL with IBS rod in Deflection Head Track   | 189 | 51IS55 +<br>min 64mm steel<br>stud | 58.2 | -/60/60<br>FCO-2660              | 40<br>50 | <del></del><br>42   | Nil<br>50G14 or 50P14<br>stud side only                                   | 0.98<br>2.28 or 2.05 |
|                                                                                                                                                                                                                                                                                                                          |     |                                    |      | -/90/90*<br>FSV-0883<br>FCO-2256 |          |                     |                                                                           |                      |
| As above (min 50mm gap between I studs and C studs. Nom 50mm cavity on furring channel side)                                                                                                                                                                                                                             | 240 |                                    |      |                                  | 61       | 50                  | 90G16 or 100P14<br>in stud cavity.<br>50G11 or 50P14<br>in furring cavity | 4.43 or 3.96         |
| 50IWF13FS13F                                                                                                                                                                                                                                                                                                             |     |                                    |      |                                  |          |                     |                                                                           |                      |
| 2x25mm Shaftliner™ panels 1x13mm Firestop™ pbd to one side on 28mm furring channel 1x13mm Firestop™ pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max – engineer to design (min 20mm gap between I studs and C studs) *Increase FRL with IBS rod in Deflection Head Track | 189 | 51IS55 +<br>min 64mm steel<br>stud | 59.8 | -/90/90<br>FCO-2660              | 43<br>53 | 43<br>CSIRO TL418-e | Nil<br>75P14<br>stud side only                                            | 0.96<br>2.51         |
|                                                                                                                                                                                                                                                                                                                          |     |                                    |      | -/120/120*<br>FSV-2434           |          |                     |                                                                           |                      |
| As above (min 50mm gap between I studs and C studs. Nom 50mm cavity on furring channel side)                                                                                                                                                                                                                             | 240 |                                    |      |                                  | 62       | 50                  | 90G11 or 100P14<br>in stud cavity.<br>50G11 or 50P14<br>in furring cavity | 4.12 or 3.94         |

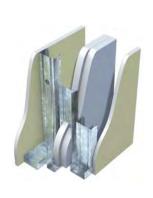
<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems.
• Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).


| <b>B</b>   System Index |                  |              |              |               |       | Selector- | + PLASTE                     | RBOARD SYSTE | EMS                  |
|-------------------------|------------------|--------------|--------------|---------------|-------|-----------|------------------------------|--------------|----------------------|
|                         |                  |              |              |               | Fire  |           | Acoustic Ratio               | ngs          |                      |
|                         |                  | Nom<br>Width | Stud<br>Size | Pbd<br>Weight | FRL   |           |                              |              | Total<br>R Value     |
| Layout                  | System Reference | (mm)         | (mm)         | (kg/m²)       | Basis | $R_{W}$   | $R_{\rm w}$ +C <sub>tr</sub> | Insulation   | (m <sup>2</sup> K/W) |



| 50IWF13AS13A                                                                                                                                                                                                                                                            |     |                                    |      |                        |    |    |                                                                           |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|------------------------|----|----|---------------------------------------------------------------------------|--------------|
| 2x25mm Shaftliner™ panels 1x13mm Soundstop® pbd on 28mm furring channels to one side 1x13mm Soundstop® pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 20mm gap between I studs and C studs) | 211 | 51IS55 +<br>min 64mm steel<br>stud | 63.4 | -/60/60<br>FCO-2660    | 44 | _  | Nil                                                                       | 0.96         |
| *Increase FRL with IBS rod in Deflection Head Track                                                                                                                                                                                                                     |     |                                    |      | -/90/90*<br>WFRA 40970 | 61 | 50 | 90G16 or 100P14<br>in stud cavity.<br>50G11 or 50P14<br>in furring cavity | 4.09 or 3.48 |
| As above (min 50mm gap between I studs and C studs. Nom 50mm cavity on furring channel side)                                                                                                                                                                            | 240 |                                    |      |                        | 62 | 50 | 70G11 or 75P14<br>in stud cavity.<br>50G11 or 50P14<br>in furring cavity  | 3.64 or 3.43 |

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems. • Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).


| B   System Index |                  |                      |                      |                          |              | Selector-   | + PLASTE                  | RBOARD SYSTI | EMS                         |
|------------------|------------------|----------------------|----------------------|--------------------------|--------------|-------------|---------------------------|--------------|-----------------------------|
|                  |                  |                      |                      |                          | Fire         |             | Acoustic Ratio            | ngs          |                             |
| Layout           | System Reference | Nom<br>Width<br>(mm) | Stud<br>Size<br>(mm) | Pbd<br>Weight<br>(kg/m²) | FRL<br>Basis | $R_{\sf W}$ | $R_{\rm w}$ + $C_{ m tr}$ | Insulation   | Total<br>R Value<br>(m²K/W) |



| 50IWS13S13                                                                                                                                                                                                                                                                             |     |                                    |      |                       |          |                            |                                                            |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|-----------------------|----------|----------------------------|------------------------------------------------------------|------------------------------|
| 2x25mm Shaftliner™ panels 1x13mm Std Core pbd to one side on separate steel stud frame 1x13mm Std Core pbd to other side on separate steel stud frame I studs @ 600mm ctrs max                                                                                                         | 245 | 51IS55 +<br>min 64mm steel<br>stud | 58.2 | -/90/90<br>WFRA 40970 | 36<br>55 | <del></del>                | Nil<br>50G14 or 50P14<br>one side only<br>75G14 both sides | 0.98<br>2.28 or 2.05<br>4.76 |
| C studs @ 600mm ctrs max – engineer to design (min 20mm gap between I studs and C studs both sides)                                                                                                                                                                                    |     |                                    |      |                       | 61       | CSIRO TL402-efgh           | 1                                                          | 5.24 or 4.43                 |
| 50IWS13AS13A                                                                                                                                                                                                                                                                           |     |                                    |      |                       |          |                            |                                                            |                              |
| 2x25mm Shaftliner™ panels 1x13mm Soundstop® pbd to one side on separate steel stud frame 1x13mm Soundstop® pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 20mm gap between I studs and C studs both sides) | 245 | 51IS55 +<br>min 64mm steel<br>stud | 63.4 | -/90/90<br>FSV 0883   | 40<br>63 | 50                         | Nil<br>70G14 or 75P14<br>both sides                        | 0.95<br>4.53 or 4.05         |
| As above (min 26mm gap between I studs and C studs both sides                                                                                                                                                                                                                          | 257 |                                    |      |                       | 68       | 56  Renzo Tonin & Assoc Tl | 90G11<br>both sides                                        | 4.89                         |

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems.
• Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

| B   System Index |                  |              |              |               |       | Selector | + PLASTE                     | RBOARD SYSTE | iMS                  |
|------------------|------------------|--------------|--------------|---------------|-------|----------|------------------------------|--------------|----------------------|
|                  |                  |              |              |               | Fire  |          | Acoustic Ratio               | ngs          |                      |
|                  |                  | Nom<br>Width | Stud<br>Size | Pbd<br>Weight | FRL   |          |                              |              | Total<br>R Value     |
| Layout           | System Reference | (mm)         | (mm)         | (kg/m²)       | Basis | $R_{W}$  | $R_{\rm W}$ +C <sub>tr</sub> | Insulation   | (m <sup>2</sup> K/W) |



| 50IWS13FS13F                                                                                                                                                                                                                                                                         |     |                                    |      |                       |          |                   |                                      |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|------|-----------------------|----------|-------------------|--------------------------------------|----------------------|
| 2x25mm Shaftliner™ panels 1x13mm Firestop™ pbd to one side on separate steel stud frame 1x13mm Firestop™ pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 20mm gap between I studs and C studs both sides) | 245 | 51IS55 +<br>min 64mm steel<br>stud | 62.0 | -/120/120<br>FCO-2434 | 40<br>62 | <del></del><br>50 | Nil<br>90G14 or 100P14<br>both sides | 0.96<br>5.03 or 4.41 |
| 50IWS13WS13W                                                                                                                                                                                                                                                                         |     |                                    |      |                       |          |                   |                                      |                      |
| 2x25mm Shaftliner™ panels 1x13mm Wet Area pbd to one side on separate steel stud frame 1x13mm Wet Area pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 20mm gap between I studs and C studs both sides)   | 245 | 51IS55 +<br>min 64mm steel<br>stud | 59.8 | -/90/90<br>WFRA 40970 | 39<br>61 | <del></del><br>50 | Nil<br>90G16 or 100P14<br>both sides | 0.97<br>5.23 or 4.42 |

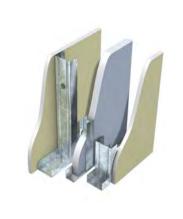
<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems. • Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

| B   System Index |                  |              |              |               |       | Selector | + PLASTE                   | RBOARD SYSTI | EMS                     |
|------------------|------------------|--------------|--------------|---------------|-------|----------|----------------------------|--------------|-------------------------|
|                  |                  |              |              |               | Fire  |          | Acoustic Ratio             | ngs          |                         |
|                  |                  | Nom<br>Width | Stud<br>Size | Pbd<br>Weight | FRL   |          |                            |              | Total<br><i>R</i> Value |
| Layout           | System Reference | (mm)         | (mm)         | (kg/m²)       | Basis | $R_{W}$  | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation   | (m <sup>2</sup> K/W)    |

## $\textbf{\textit{y} Separating Wall Systems - IntRwall}^{\texttt{@}} \ (\textit{formerly Eurekawall}^{\texttt{@}}) \ \textit{\textit{Max height 3000mm (max pressure 0.35kPa)}}$

25IWS13S13




| 2011101010                                                                                                                                                                                                                                                                             |     |                                 |      |                     |          |                   |                                      |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|------|---------------------|----------|-------------------|--------------------------------------|----------------------|
| 1x25mm Shaftliner™ panels 1x13mm Std Core pbd to one side on separate steel stud frame 1x13mm Std Core pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 46mm gap between I studs and C studs both sides)     | 271 | 51IS55 + min<br>64mm steel stud | 37.7 | -/60/60<br>FCO-2256 | 37<br>61 | <del></del><br>50 | Nil<br>90G16 or 100P14<br>both sides | 0.88<br>5.73 or 5.04 |
| 25IWS13AS13A                                                                                                                                                                                                                                                                           |     |                                 |      |                     |          |                   |                                      |                      |
| 1x25mm Shaftliner™ panels 1x13mm Soundstop® pbd to one side on separate steel stud frame 1x13mm Soundstop® pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max — engineer to design (min 36mm gap between I studs and C studs both sides) | 251 | 51IS55 + min<br>64mm steel stud | 42.9 | -/60/60<br>FCO-2256 | 39<br>62 | 50                | Nil<br>90G16 or 100P14<br>both sides | 0.86<br>5.63 or 4.73 |
| 25IWS13WS13W                                                                                                                                                                                                                                                                           |     |                                 |      |                     |          |                   |                                      |                      |
| 1x25mm Shaftliner™ panels 1x13mm Wet Area pbd to one side on separate steel stud frame 1x13mm Wet Area pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max – engineer to design (min 36mm gap between I studs and C studs both sides)     | 251 | 51IS55 + min<br>64mm steel stud | 39.3 | -/60/60<br>FCO-2256 | 38<br>61 | <del></del><br>50 | Nil<br>90G16 or 100P14<br>both sides | 0.87<br>5.65 or 4.74 |

Note: Systems shown on this page are not to be used for corridor walls. Penetrations in Shaftliner™ panels are not permitted. Contact Boral Plasterboard for further information.

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems.
• Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

| B   System Index |                  |              |              |               |       | Selector- | + PLASTE                   | RBOARD SYSTE | ims                  |
|------------------|------------------|--------------|--------------|---------------|-------|-----------|----------------------------|--------------|----------------------|
|                  |                  |              |              |               | Fire  |           | Acoustic Ratio             | ngs          |                      |
|                  |                  | Nom<br>Width | Stud<br>Size | Pbd<br>Weight | FRL   |           |                            |              | Total<br>R Value     |
| Layout           | System Reference | (mm)         | (mm)         | (kg/m²)       | Basis | $R_{W}$   | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation   | (m <sup>2</sup> K/W) |

## $\textbf{ » Separating Wall Systems - IntRwall} \\ \textbf{ (formerly Eurekawall} \\ \textbf{ (formerly Eurekawall} \\ \textbf{ (formerly Eurekawall} \\ \textbf{ )} \\ \textbf{ (Max height 3000mm (max pressure 0.35kPa) } \\ \textbf{ (formerly Eurekawall} \\ \textbf{ )} \\ \textbf{ (formerly Eurekawall} \\ \textbf{ (formerly Eurekawall} \\ \textbf{ )} \\ \textbf{ (formerly Eur$



| 25IWS20S20                                                                                                                                                                                                                                                                         |     |                                 |      |                     |          |                   |                                      |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|------|---------------------|----------|-------------------|--------------------------------------|----------------------|
| 1x25mm Shaftliner™ panels 2x10mm Std Core pbd to one side on separate steel stud frame 2x10mm Std Core pbd to other side on separate steel stud frame I studs @ 600mm ctrs max C studs @ 600mm ctrs max – engineer to design (min 26mm gap between I studs and C studs both sides) | 245 | 51IS55 + min<br>64mm steel stud | 47.7 | -/60/60<br>FCO-2256 | 40<br>64 | <del></del><br>50 | Nil<br>90G11 or 100P14<br>both sides | 0.95<br>4.88 or 4.57 |

Walls

Note: Systems shown on this page are not to be used for corridor walls. Penetrations in Shaftliner™ panels are not permitted. Contact Boral Plasterboard for further information.

<sup>•</sup> For explanation of System Reference notation refer Section B1 of Boral Selector+ Plasterboard Systems. • For Limiting Heights of steel C Studs refer Section C of Boral Selector+ Plasterboard Systems. • Insulation abbreviation: XXGYY = Glasswool insulation in format of thickness (mm), P (Polyester), Density (kg/m³). XXPYY = Polyester insulation in format of thickness (mm), P (Polyester), Density (kg/m³).

| B   System Index |            |             |             |          | Sele  | ctor+        | PLASTE        | RBOAF     | RD SYSTE     | MS                         |            |
|------------------|------------|-------------|-------------|----------|-------|--------------|---------------|-----------|--------------|----------------------------|------------|
|                  |            | Approx      | Fire Res    | sistance |       | Nom          |               | Acou      | ıstic Rating | js                         |            |
|                  |            |             | Pbd<br>Mass |          |       | Stud<br>Size | Wall<br>Width | Nil Insul | With I       | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis | (mm)         | (mm)          | $R_{W}$   | $R_{W}$      | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

## **Shaft Systems - Shaft Wall**



System **SH32F** illustrated

| SH16F   | 1x25mm Shaftliner<br>1x16mm Firestop pbd to other side | 33.5 | -/60/60                | FCO-1556             | 64CH55  | 80  | 38 | 46 | 34 | 50G11, 50P14 |
|---------|--------------------------------------------------------|------|------------------------|----------------------|---------|-----|----|----|----|--------------|
|         | of frame                                               |      |                        |                      | 64CH90  | 80  | 38 | 45 | 33 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH55 | 118 | 42 | 48 | 37 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH90 | 118 | 41 | 47 | 36 | 50G11, 50P14 |
| SH26F   | 1x25mm Shaftliner                                      | 41.5 | -/120/90 from          | FCO-1828             | 64CH55  | 90  | 44 | 50 | 38 | 50G11, 50P14 |
|         | 2x13mm Firestop pbd to other side of frame             |      | occupancy<br>-/120/120 | FCO-1503             | 64CH90  | 90  | 43 | 49 | 37 | 50G11, 50P14 |
|         | of frame                                               |      | from shaft             |                      | 102CH55 | 128 | 46 | 52 | 41 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH90 | 128 | 45 | 51 | 41 | 50G11, 50P14 |
| SH29F   | 1x25mm Shaftliner                                      | 44.0 | -/120/120              | FCO-1828             | 64CH55  | 93  | 43 | 50 | 37 | 50G11, 50P14 |
|         | 1x16mm + 1x13mm Firestop pbd to other side of frame    |      |                        | FCO-1503             | 64CH90  | 93  | 42 | 49 | 36 | 50G11, 50P14 |
|         | other side of frame                                    |      |                        |                      | 102CH55 | 131 | 46 | 52 | 42 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH90 | 131 | 45 | 51 | 41 | 50G11, 50P14 |
| SH32F   | 1x25mm Shaftliner                                      | 46.5 | -/120/120              | SI 1017              | 64CH55  | 96  | 43 | 50 | 40 | 50G10        |
|         | 2x16mm Firestop pbd to other side of frame             |      |                        | FCO-1828<br>FCO-1659 | 64CH90  | 96  | 42 | 49 | 38 | 50G11, 50P14 |
|         | of frame                                               |      |                        | FCO-1503             | 102CH55 | 134 | 46 | 52 | 42 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH90 | 134 | 45 | 51 | 41 | 50G11, 50P14 |
| SH1616F | 1x25mm Shaftliner                                      | 46.5 | -/120/120              | FR1429               | 64CH55  | 96  | 42 | 50 | 38 | 50G14, 50P14 |
|         | 1x16mm Firestop pbd to each side of frame              |      |                        |                      | 64CH90  | 96  | 41 | 49 | 37 | 50G11, 50P14 |
|         | of fruite                                              |      |                        |                      | 102CH55 | 134 | 45 | 52 | 41 | 50G11, 50P14 |
|         |                                                        |      |                        |                      | 102CH90 | 134 | 44 | 51 | 40 | 50G11, 50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          | Sele     | ctor+        | PLASTE        | RBOAF            | RD SYSTEI | MS                           |            |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|------------------|-----------|------------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           | Acoustic Ratings |           |                              | S          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul        | With      | Insulation                   | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$          | $R_{W}$   | $R_{\rm w}$ +C <sub>tr</sub> | Туре       |

## **Shaft Systems - Ventshaft**



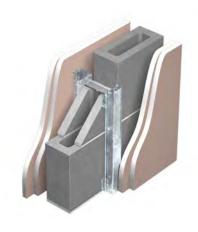
| VS39F     | 3x13mm Firestop pbd layers screw laminated together                                                                               | 31.5 | -/90/90   | FCO-2423 | Nil    | 39      | 37 | -  | 34 | Nil  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|--------|---------|----|----|----|------|
| VS48F     | 3x16mm Firestop pbd layers screw laminated together                                                                               | 39.0 | -/120/120 | FSV-0538 | Nil    | 48      | 38 | NA | 35 | Nil  |
| VS48F+T10 | 3x16mm Firestop pbd layers screw<br>laminated together<br>1x10mm Std Core pbd on<br>independent timber frame<br>(85mm air cavity) | 45.8 | -/120/120 | FCO-1665 | 70x45  | 143 min | 43 | 53 | 40 | 50P7 |
| VS48F+S10 | 3x16mm Firestop pbd layers screw<br>laminated together<br>1x10mm Std Core pbd on<br>independent steel frame<br>(85mm air cavity)  | 45.8 | -/120/120 | FCO-1480 | 64CS50 | 143 min | 43 | 53 | 40 | 50P7 |
| VS57F     | 16mm Firestop pbd adhesive +<br>screw laminated to each side of<br>1x25mm Shaftliner                                              | 46.5 | -/120/120 | FSV-0169 | Nil    | 60      | 31 | NA | NA | Nil  |

# **Shaft Systems - IntRwall®** (formerly Eurekawall®)

Refer systems 50IW13 and 50IW13F listed under Separating Wall Systems - IntRwall®

| B   System Index | B   System Index |             |             |          |          | Select       | or+ F         | PLASTERB  | OARD                               | SYSTEMS                    | 5          |
|------------------|------------------|-------------|-------------|----------|----------|--------------|---------------|-----------|------------------------------------|----------------------------|------------|
|                  |                  |             | Approx      | Fire Res | sistance |              | Nom           |           | Acous                              | tic Ratings                | i          |
|                  |                  |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I                             | Insulation                 | Insulation |
| Layout           | System Ref       | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\scriptscriptstyle 	extsf{W}}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

# **Masonry Wall Systems - Lining**




System **M1010** illustrated

|      | 9                                            |      |    |    |     |                 |    |    |    |    |
|------|----------------------------------------------|------|----|----|-----|-----------------|----|----|----|----|
| M10  | 1x10mm Std Core pbd to one side of masonry   | 6.8  | NA | NA | Nil | 12 +<br>masonry | NA | NA | NA | NA |
| M101 | 1x10mm Std Core pbd to both sides of masonry | 13.6 | NA | NA | Nil | 24 +<br>masonry | NA | NA | NA | NA |

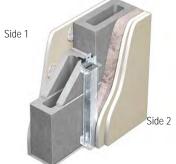
| B   System Index |            | Se          | elector+ PLAS | STERBOARD    | SYSTEMS |      |       |
|------------------|------------|-------------|---------------|--------------|---------|------|-------|
|                  |            |             | Approx        | Fire Resista | ance    |      |       |
|                  |            |             | Pbd           |              |         | Stud | Nom   |
|                  |            |             | Mass          |              |         | Size | Width |
| Layout           | System Ref | Description | (kg/m²)       | FRL          | Basis   | (mm) | (mm)  |

# **Masonry Wall Systems - Fire Upgrades**



System MF3232F illustrated

|         | <u> </u>                                            |      |                                        |           |    |                  |
|---------|-----------------------------------------------------|------|----------------------------------------|-----------|----|------------------|
| MF16F   | 1x16mm Firestop pbd furred to one side of masonry   | 13.0 | X+30/X+30/X+30<br>from lined side only | FCO-0394R | NA | 34 +<br>masonry  |
| MF26F   | 2x13mm Firestop pbd furred to one side of masonry   | 21.0 | X+60/X+60/X+60<br>from lined side only | FCO-0394R | NA | 44 +<br>masonry  |
| MF32F   | 2x16mm Firestop pbd furred to one side of masonry   | 26.0 | X+90/X+90/X+90<br>from lined side only | FCO-0394R | NA | 50 +<br>masonry  |
| MF1616F | 1x16mm Firestop pbd furred to both sides of masonry | 26.0 | X+30/X+60/X+60                         | FCO-0394R | NA | 68 +<br>masonry  |
| MF2626F | 2x13mm Firestop pbd furred to both sides of masonry | 42.0 | X+60/X+120/X+120                       | FCO-0394R | NA | 88 +<br>masonry  |
| MF3232F | 2x16mm Firestop pbd furred to both sides of masonry | 52.0 | X+90/X+180/X+180                       | FCO-0394R | NA | 100 +<br>masonry |


X = FRL of masonry wall

Side 1

#### **Masonry Wall Systems - Acoustic Upgrades** Description Detail A Wall lining side 1: Side 1 1x13mm Boral Std Core plasterboard adhesive fixed Wall lining side 2: 1x13mm Boral Std Core plasterboard adhesive fixed Side 2 Detail B Wall lining side 1: Side 1 1x13mm Boral Std Core plasterboard adhesive fixed Wall lining side 2: 1x13mm Boral Std Core plasterboard 28mm furring channels at 600mm centres Boral Acoustic Impact Clips 50G14 or 50P14 insulation (if required) Side 2 Detail C

Wall lining side 1: 1x13mm Boral Std Core plasterboard adhesive fixed

Wall lining side 2: 2x13mm Boral Std Core plasterboard 28mm furring channels at 600mm centres Boral Acoustic Impact Clips 50G14 or 50P14 insulation (if required)



#### Description

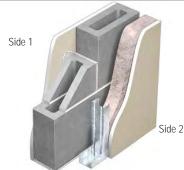
Wall lining side 1:

Detail D

1x13mm Boral Std Core plasterboard 16mm furring channels at 600mm ctrs Furring channel clips

Wall lining side 2: 1x13mm Boral Std Core plasterboard

28mm furring channels at 600mm centres Boral Acoustic Impact Clips 50G14 or 50P14 insulation (if required)


#### Detail E

Wall lining side 1:

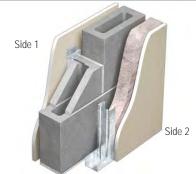
1x13mm Boral Std Core plasterboard adhesive fixed

Wall lining side 2:

1x13mm Boral Std Core plasterboard Minimum 51mm steel studs 20mm gap between masonry & stud 50G14 or 50P14 insulation (if required)



Side 2


#### Detail F

Wall lining side 1:

1x13mm Boral Std Core plasterboard 16mm furring channels at 600mm ctrs Furring channel clips

Wall lining side 2:

1x13mm Boral Std Core plasterboard Minimum 51mm steel studs 20mm gap between masonry & stud 50G14 or 50P14 insulation (if required)



| <b>B2</b> | Walls |
|-----------|-------|
|           |       |

| B   System Index |            |             |             |          | Select | or+ F        | PLASTERB      | OARD      | SYSTEM:      | S                          |            |
|------------------|------------|-------------|-------------|----------|--------|--------------|---------------|-----------|--------------|----------------------------|------------|
|                  |            | Approx      | Fire Res    | sistance |        | Nom          |               | Acous     | stic Ratings | 5                          |            |
|                  |            |             | Pbd<br>Mass |          |        | Stud<br>Size | Wall<br>Width | Nil Insul | With         | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis  | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$  | $R_{\rm W}$ +C $_{\rm tr}$ | Туре       |

|                             | M125C | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail A | 17.2 | Refer CCAA | Refer CCAA | NA         | 155 | 51 | NA | NA | NA              |
|-----------------------------|-------|------------------------------------------------------|------|------------|------------|------------|-----|----|----|----|-----------------|
|                             |       | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail B | 17.2 |            |            | NA         | 195 | 53 | 56 | 48 | 50G11,<br>50P14 |
| Defendatelle en neue D2 27  |       | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail C | 25.8 |            |            | NA         | 208 | 56 | 63 | 54 | 50G11,<br>50P14 |
| Refer details on page B2.37 |       | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail D | 17.2 |            |            | NA         | 209 | 52 | 55 | 47 | 50G11,<br>50P14 |
|                             |       | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail E | 17.2 |            |            | Min 51CS50 | 212 | 56 | 62 | 52 | 50G11,<br>50P14 |
|                             |       | 125mm conc tilt panel<br>nom 300kg/m²<br>To detail F | 17.2 |            |            | Min 51CS50 | 238 | 55 | 61 | 52 | 50G11,<br>50P14 |

| B   System Index | B   System Index |             |             |          |       | Select       | or+ F         | PLASTERB  | OARD                               | SYSTEM:                    | S          |
|------------------|------------------|-------------|-------------|----------|-------|--------------|---------------|-----------|------------------------------------|----------------------------|------------|
|                  |                  | Approx      | Fire Re     | sistance |       | Nom          |               | Acous     | stic Ratings                       | 5                          |            |
|                  |                  |             | Pbd<br>Mass |          |       | Stud<br>Size | Wall<br>Width | Nil Insul | With I                             | Insulation                 | Insulation |
| Layout           | System Ref       | Description | (kg/m²)     | FRL      | Basis | (mm)         | (mm)          | $R_{W}$   | $R_{\scriptscriptstyle 	extsf{W}}$ | $R_{\rm w}$ +C $_{\rm tr}$ | Type       |

| M150C | 150mm conc tilt panel<br>nom 360kg/m²<br>To detail A | 17.2 | Refer CCAA | Refer CCAA | NA         | 180 | 53 | NA | NA | NA              |
|-------|------------------------------------------------------|------|------------|------------|------------|-----|----|----|----|-----------------|
|       | 150mm con tilt panel<br>nom 360kg/m²<br>To detail B  | 17.2 |            |            | NA         | 220 | 54 | 57 | 49 | 50G11,<br>50P14 |
|       | 150mm conc tilt panel<br>nom 360kg/m²<br>To detail C | 25.8 |            |            | NA         | 233 | 58 | 64 | 55 | 50G11,<br>50P14 |
|       | 150mm conc tilt panel<br>nom 360kg/m²<br>To detail D | 17.2 |            |            | NA         | 234 | 53 | 56 | 48 | 50G11,<br>50P14 |
|       | 150mm conc tilt panel<br>nom 360kg/m²<br>To detail E | 17.2 |            |            | Min 51CS50 | 237 | 58 | 63 | 54 | 50G11,<br>50P14 |
|       | 150mm conc tilt panel<br>nom 360kg/m²<br>To detail F | 17.2 |            |            | Min 51CS50 | 263 | 57 | 62 | 53 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB    | OARD        | SYSTEM:                   | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-------------|-------------|---------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |             | Acous       | tic Ratings               | 5          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul   | With        | Insulation                | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{\rm W}$ | $R_{\rm W}$ | $R_{\rm W}$ + $C_{ m tr}$ | Туре       |

| M10.01 | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail A | 17.2 | Refer Boral<br>Masonry | Refer Boral<br>Masonry | NA         | 120 | 47 | NA | NA | NA              |
|--------|--------------------------------------------------------------------------------|------|------------------------|------------------------|------------|-----|----|----|----|-----------------|
|        | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail B | 17.2 |                        |                        | NA         | 160 | 50 | 53 | 44 | 50G11,<br>50P14 |
|        | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail C | 25.8 |                        |                        | NA         | 173 | 52 | 60 | 51 | 50G11,<br>50P14 |
|        | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail D | 17.2 |                        |                        | NA         | 174 | 49 | 52 | 43 | 50G11,<br>50P14 |
|        | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail E | 17.2 |                        |                        | Min 51CS50 | 177 | 52 | 59 | 50 | 50G11,<br>50P14 |
|        | 90mm Boral Masonry Hollow<br>Block (10.01)<br>nom 135kg/m² laid<br>To detail F | 17.2 |                        |                        | Min 51CS50 | 203 | 51 | 58 | 49 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB  | OARD        | SYSTEMS                    | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Re: | sistance |              | Nom           |           | Acous       | stic Ratings               | 5          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

|        | <u> </u>                                                                        |      |                        |                        |            |     |    |    |    |                 |
|--------|---------------------------------------------------------------------------------|------|------------------------|------------------------|------------|-----|----|----|----|-----------------|
| M15.01 | 140mm Boral Masonry Hollow<br>Block (15.01)<br>nom 180kg/m² laid<br>To detail A | 17.2 | Refer Boral<br>Masonry | Refer Boral<br>Masonry | NA         | 170 | 48 | NA | NA | NA              |
|        | 140mm Boral Masonry Hollow Block<br>(15.01)<br>nom 180kg/m² laid<br>To detail B | 17.2 |                        |                        | NA         | 210 | 51 | 54 | 45 | 50G11,<br>50P14 |
|        | 140mm Boral Masonry Hollow Block<br>(15.01)<br>nom 180kg/m² laid<br>To detail C | 25.8 |                        |                        | NA         | 223 | 53 | 60 | 51 | 50G11,<br>50P14 |
|        | 140mm Boral Masonry Hollow Block<br>(15.01)<br>nom 180kg/m² laid<br>To detail D | 17.2 |                        |                        | NA         | 224 | 50 | 53 | 44 | 50G11,<br>50P14 |
|        | 140mm Boral Masonry Hollow Block<br>(15.01)<br>nom 180kg/m² laid<br>To detail E | 17.2 |                        |                        | Min 51CS50 | 229 | 53 | 59 | 50 | 50G11,<br>50P14 |
|        | 140mm Boral Masonry Hollow Block<br>(15.01)<br>nom 180kg/m² laid<br>To detail F | 17.2 |                        |                        | Min 51CS50 | 253 | 52 | 58 | 49 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB  | OARD    | SYSTEMS                    | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acous   | stic Ratings               | ;          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With    | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

| M15.01CF<br>and Boral<br>Connex <sup>™</sup> 1 | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail A | 17.2 | Refer Boral<br>Masonry | Refer Boral<br>Masonry | NA         | 170 | 50 | NA | NA | NA              |
|------------------------------------------------|----------------------------------------------------------------------------------------------|------|------------------------|------------------------|------------|-----|----|----|----|-----------------|
|                                                | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail B | 17.2 |                        |                        | NA         | 210 | 52 | 56 | 48 | 50G11,<br>50P14 |
|                                                | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail C | 25.8 |                        |                        | NA         | 223 | 55 | 63 | 54 | 50G11,<br>50P14 |
|                                                | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail D | 17.2 |                        |                        | NA         | 224 | 51 | 55 | 47 | 50G11,<br>50P14 |
|                                                | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail E | 17.2 |                        |                        | Min 51CS50 | 229 | 55 | 62 | 53 | 50G11,<br>50P14 |
|                                                | 140mm Boral Masonry Hollow<br>Block (15.01), core filled<br>nom 295kg/m² laid<br>To detail F | 17.2 |                        |                        | Min 51CS50 | 253 | 54 | 61 | 52 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB  | OARD        | SYSTEMS                    | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acous       | tic Ratings                | i          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

| M20.01 | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail A | 17.2 | Refer Boral<br>Masonry | Refer Boral<br>Masonry | NA         | 220 | 49 | NA | NA | NA              |
|--------|---------------------------------------------------------------------------------|------|------------------------|------------------------|------------|-----|----|----|----|-----------------|
|        | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail B | 17.2 |                        |                        | NA         | 260 | 52 | 55 | 46 | 50G11,<br>50P14 |
|        | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail C | 25.8 |                        |                        | NA         | 273 | 54 | 61 | 52 | 50G11,<br>50P14 |
|        | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail D | 17.2 |                        |                        | NA         | 274 | 51 | 54 | 45 | 50G11,<br>50P14 |
|        | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail E | 17.2 |                        |                        | Min 51CS50 | 279 | 54 | 60 | 52 | 50G11,<br>50P14 |
|        | 190mm Boral Masonry Hollow<br>Block (20.01)<br>nom 220kg/m² laid<br>To detail F | 17.2 |                        |                        | Min 51CS50 | 303 | 53 | 59 | 51 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB    | OARD    | SYSTEMS                    | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-------------|---------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |             | Acous   | tic Ratings                | ;          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul   | With    | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{\rm W}$ | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Type       |

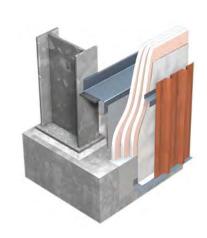
| M20.01CF<br>and Boral<br>Connex <sup>™</sup> 200 | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail A | 17.2 | Refer Boral<br>Masonry | Refer Boral<br>Masonry | NA         | 220 | 52 | NA | NA | NA              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------|------|------------------------|------------------------|------------|-----|----|----|----|-----------------|
|                                                  | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail B | 17.2 |                        |                        | NA         | 260 | 54 | 57 | 49 | 50G11,<br>50P14 |
|                                                  | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail C | 25.8 |                        |                        | NA         | 273 | 57 | 64 | 55 | 50G11,<br>50P14 |
|                                                  | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail D | 17.2 |                        |                        | NA         | 274 | 53 | 56 | 48 | 50G11,<br>50P14 |
|                                                  | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail E | 17.2 |                        |                        | Min 51CS50 | 279 | 57 | 63 | 54 | 50G11,<br>50P14 |
|                                                  | 190mm Boral Masonry Hollow<br>Block (20.01), core filled<br>nom 400kg/m² laid<br>To detail F | 17.2 |                        |                        | Min 51CS50 | 303 | 56 | 62 | 53 | 50G11,<br>50P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB  | OARD        | SYSTEMS                    | S          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |           | Acous       | tic Ratings                | i          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | With I      | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Туре       |

| M90B | 90mm clay brick<br>min wall surface density 130 kg/m²<br>To detail A             | 17.2 | Refer<br>Boral Bricks/<br>Midland Bricks | Refer<br>Boral Bricks/<br>Midland Bricks | NA         | 120 | 42 | NA | NA | NA              |
|------|----------------------------------------------------------------------------------|------|------------------------------------------|------------------------------------------|------------|-----|----|----|----|-----------------|
|      | 90mm clay brick<br>min wall surface density 130 kg/m <sup>2</sup><br>To detail B | 17.2 |                                          |                                          | NA         | 160 | 46 | 53 | 45 | 50P11,<br>50G14 |
|      | 90mm clay brick<br>min wall surface density 130 kg/m <sup>2</sup><br>To detail C | 25.8 |                                          |                                          | NA         | 173 | 49 | 60 | 51 | 50P11,<br>50G14 |
|      | 90mm clay brick<br>min wall surface density 130 kg/m <sup>2</sup><br>To detail D | 17.2 |                                          |                                          | NA         | 174 | 45 | 52 | 44 | 50P11,<br>50G14 |
|      | 90mm clay brick<br>min wall surface density 130 kg/m <sup>2</sup><br>To detail E | 17.2 |                                          |                                          | Min 51CS50 | 177 | 49 | 59 | 49 | 50P11,<br>50G14 |
|      | 90mm clay brick<br>min wall surface density 130 kg/m²<br>To detail F             | 17.2 |                                          |                                          | Min 51CS50 | 203 | 48 | 58 | 49 | 50P11,<br>50G14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)


| M110B | 110mm clay brick<br>min wall surface density 170kg/m²<br>To detail A             | 17.2 | Refer<br>Boral Bricks/<br>Midland Bricks | Refer<br>Boral Bricks/<br>Midland Bricks | NA         | 140 | 45 | NA | NA | NA              |
|-------|----------------------------------------------------------------------------------|------|------------------------------------------|------------------------------------------|------------|-----|----|----|----|-----------------|
|       | 110mm clay brick<br>min wall surface density 170kg/m <sup>2</sup><br>To detail B | 17.2 |                                          |                                          | NA         | 180 | 49 | 52 | 42 | 50P11,<br>50G14 |
|       | 110mm clay brick<br>min wall surface density 170kg/m <sup>2</sup><br>To detail C | 25.8 |                                          |                                          | NA         | 193 | 52 | 58 | 50 | 50P11,<br>50G14 |
|       | 110mm clay brick<br>min wall surface density 170kg/m <sup>2</sup><br>To detail D | 17.2 |                                          |                                          | NA         | 194 | 48 | 51 | 41 | 50P11,<br>50G14 |
|       | 110mm clay brick<br>min wall surface density 170kg/m <sup>2</sup><br>To detail E | 17.2 |                                          |                                          | Min 51CS50 | 197 | 52 | 57 | 49 | 50P11,<br>50G14 |
|       | 110mm clay brick<br>min wall surface density 170kg/m <sup>2</sup><br>To detail F | 17.2 |                                          |                                          | Min 51CS50 | 223 | 51 | 56 | 48 | 50P11,<br>50G14 |

| B   System Index |            |             |             |          |          | Select       | or+ F         | PLASTERB    | OARD        | SYSTEMS                    | 5          |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-------------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           |             | Acous       | stic Ratings               | i          |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul   | With        | Insulation                 | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{\rm W}$ | $R_{\rm W}$ | $R_{\rm w}$ + $C_{\rm tr}$ | Туре       |

| M150B | 150mm clay brick<br>min wall surface density 240kg/m <sup>2</sup><br>To detail A | 17.2 | Refer<br>Boral Bricks/<br>Midland Bricks | Refer<br>Boral Bricks/<br>Midland Bricks | NA         | 180 | 48 | NA | NA | NA              |
|-------|----------------------------------------------------------------------------------|------|------------------------------------------|------------------------------------------|------------|-----|----|----|----|-----------------|
|       | 150mm clay brick<br>min wall surface density 240kg/m <sup>2</sup><br>To detail B | 17.2 |                                          |                                          | NA         | 220 | 50 | 53 | 44 | 50P11,<br>50G14 |
|       | 150mm clay brick<br>min wall surface density 240kg/m <sup>2</sup><br>To detail C | 25.8 |                                          |                                          | NA         | 233 | 53 | 60 | 51 | 50P11,<br>50G14 |
|       | 150mm clay brick<br>min wall surface density 240kg/m <sup>2</sup><br>To detail D | 17.2 |                                          |                                          | NA         | 234 | 49 | 52 | 43 | 50P11,<br>50G14 |
|       | 150mm clay brick<br>min wall surface density 240kg/m²<br>To detail E             | 17.2 |                                          |                                          | Min 51CS50 | 237 | 53 | 59 | 50 | 50P11,<br>50G14 |
|       | 150mm clay brick<br>min wall surface density 240kg/m²<br>To detail F             | 17.2 |                                          |                                          | Min 51CS50 | 263 | 52 | 58 | 49 | 50P11,<br>50G14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights of steel C Studs refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

## **External Wall Systems - Fireclad®**



System FC39F illustrated

| 1 11 0010 |                                                                                                   |      |                                     |                                  |    |           |    |    |                                                      |     |
|-----------|---------------------------------------------------------------------------------------------------|------|-------------------------------------|----------------------------------|----|-----------|----|----|------------------------------------------------------|-----|
| FC32F     | To girts, 2x16mm Firestop pbd<br>followed by Tyvek® HomeWrap<br>membrane, battens<br>and cladding | 26.0 | 60/60/60 from outside only          | FCO-1419<br>FCO-1555<br>FCO-1890 | NA | Adds 54mm | 34 | NA | Nil insulation,<br>20x0.75mm<br>batten,<br>40mm wide | 0.5 |
| FC39F     | To girts, 3x13mm Firestop pbd<br>followed by Tyvek® HomeWrap<br>membrane, battens<br>and cladding | 31.5 | 90/90/90 from<br>outside only       | FCO-1419<br>FCO-1555<br>FCO-1890 | NA | Adds 61mm | 37 | NA | Nil insulation,<br>20x0.75mm<br>batten,<br>40mm wide | 0.5 |
| FC48F     | To girts, 3x16mm Firestop pbd<br>followed by Tyvek® HomeWrap<br>membrane, battens<br>and cladding | 39.0 | 120/120/120<br>from outside<br>only | FCO-1890                         | NA | Adds 70mm | 38 | NA | Nil insulation,<br>20x0.75mm<br>batten,<br>40mm wide | 0.5 |

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOARD S  | SYSTEMS    |                      |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-----------|------------|----------------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           | Acoustic  | Ratings   |            |                      |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | W/- Insul | Insulation | R Value              |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$   | Туре       | (m <sup>2</sup> K/W) |

# **External Wall Systems - OutRwall®**



System OW16WF10 illustrated

| OW16WF10                      | 1x16mm Wet Area Firestop pbd<br>to external side of timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>1x10mm Std Core pbd to internal side                          | 19.8 | 60/60/60 from<br>outside only<br>Cf11               | C91580                       | as required | 26 + frame<br>+ cladding<br>system | 35 | 38 | R2 GW<br>wall batt | 2.2 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------|------------------------------|-------------|------------------------------------|----|----|--------------------|-----|
| OW16WFR10A                    | 1x16mm Wet Area Firestop pbd<br>to external side of timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>1x10mm Soundstop pbd on resilient<br>channel to internal side | 21.2 | 60/60/60 from<br>outside only<br>Cf11               | C91580                       | as required | 39 + frame<br>+ cladding<br>system | 39 | 44 | R2 GW<br>wall batt | 2.3 |
| OW16WF16F                     | 1x16mm Wet Area Firestop pbd<br>to external side of timber stud,<br>Rockwool, followed by Tyvek®<br>HomeWrap membrane,<br>battens and cladding<br>1x16mm Firestop pbd to internal<br>side         | 26.0 | 90/90/90<br>from outside<br>60/60/60<br>from inside | C91580<br>C91585<br>FCO-1708 | as required | 32 + frame<br>+ cladding<br>system | 37 | 40 | R2 GW<br>wall batt | 2.3 |
| OW16WF26F<br>(Rockwool)       | 1x16mm Wet Area Firestop pbd<br>to external side of timber stud,<br>Rockwool, followed by Tyvek®<br>HomeWrap membrane,<br>battens and cladding<br>2x13mm Firestop pbd to internal<br>side         | 34.0 | 90/90/90                                            | C91580<br>C91585<br>FCO-1708 | as required | 42 + frame<br>+ cladding<br>system | 39 | 42 | R2 GW<br>wall batt | 2.4 |
| OW16WF26F<br>(Double<br>Stud) | 1x16mm Wet Area Firestop pbd to<br>external side of <u>double</u> timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>2x13mm Firestop pbd to internal<br>side         | 34.0 | 90/90/90                                            | C91580<br>C91585             | as required | 42 + frame<br>+ cladding<br>system | 39 | 42 | R2 GW<br>wall batt | 2.3 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOARD S  | SYSTEMS    |            |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-----------|------------|------------|
|                  |            |             | Approx      | Fire Res | sistance | 0. 1         | Nom           | Acoustic  | Ratings   |            |            |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | W/- Insul | Insulation | R Value    |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$   | Туре       | $(m^2K/W)$ |

# » External Wall Systems - OutRwall®



System OW32WF10 illustrated

| OW26WF10<br>(Rockwool)       | 2x13mm Wet Area Firestop pbd<br>to external side of timber stud,<br>Rockwool, followed by Tyvek®<br>HomeWrap membrane,<br>battens and cladding<br>1x10mm Std Core pbd to internal side | 27.8 | 90/90/90<br>from outside<br>only                     | C91580<br>85<br>FCO-1708 | as required | 36 + frame<br>+ cladding<br>system | 37 | 40 | R2 GW<br>wall batt | 2.3 |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|--------------------------|-------------|------------------------------------|----|----|--------------------|-----|
| OW26WF10<br>(Double<br>Stud) | 2x13mm Wet Area Firestop pbd to<br>external side of <u>double</u> timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>1x10mm Std Core pbd to internal side | 27.8 | 90/90/90<br>from outside<br>only                     | C91580<br>85             | as required | 36 + frame<br>+ cladding<br>system | 37 | 40 | R2 GW<br>wall batt | 2.2 |
| OW32WF10                     | 2x16mm Wet Area Firestop pbd<br>to external side of timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>1x10mm Std Core pbd to internal side               | 32.8 | 90/90/90<br>from outside<br>only<br>Cf21             | C91580                   | as required | 42 + frame<br>+ cladding<br>system | 37 | 40 | R2 GW<br>Wall batt | 2.3 |
| OW32WF16F                    | 2x16mm Wet Area Firestop pbd<br>to external side of timber stud<br>followed by Tyvek® HomeWrap<br>membrane, battens and cladding<br>1x16mm Wet Area Firestop pbd to<br>internal side   | 39.0 | 90/90/90<br>from outside<br>60/60/60 from<br>inside. | C91580                   | as required | 48 + frame<br>+ cladding<br>system | 40 | 43 | R2 GW<br>wall batt | 2.3 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOARD S  | SYSTEMS    |                      |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-----------|------------|----------------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           | Acoustic  | c Ratings |            |                      |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | W/- Insul | Insulation | R Value              |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$   | Type       | (m <sup>2</sup> K/W) |

## **External Wall Systems - Brick Veneer**



System TBV10 illustrated

| TBV10  | 1x10mm Std Core pbd on timber<br>stud with external FRL 60/60/60<br>brick veneer    | 6.8  | 60/60/60<br>from outside<br>only | FCO-0626 | as required | 10 + frame + cav + veneer    | 52 | 55 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
|--------|-------------------------------------------------------------------------------------|------|----------------------------------|----------|-------------|------------------------------|----|----|---------------------------------|-----|
| TBV10A | 1x10mm Soundstop pbd on timber<br>stud with external non fire rated<br>brick veneer | 8.2  | Nil                              | NA       | as required | 10 + frame + cav + veneer    | 54 | 57 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
| TBV16F | 1x16mm Firestop pbd on timber<br>stud with external non fire rated<br>brick veneer  | 13.0 | 60/60/60<br>from inside only     | FCO-0021 | as required | 16 + frame +<br>cav + veneer | 55 | 60 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
|        | 1x16mm Firestop pbd on timber<br>stud with external FRL 60/60/60<br>brick veneer    |      | 60/60/60                         | FCO-0626 |             | 16 + frame + cav + veneer    | 55 | 60 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
| TBV20A | 2x10mm Soundstop pbd on timber<br>stud with external non fire rated<br>brick veneer | 16.4 | Nil                              | NA       | as required | 20 + frame +<br>cav + veneer | 57 | 62 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
| TBV26A | 2x13mm Soundstop pbd on timber<br>stud with external non fire rated<br>brick veneer | 22.4 | Nil                              | NA       | as required | 26 + frame + cav + veneer    | 59 | 64 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
| TBV26F | 2x13mm Firestop pbd on timber<br>stud with external FRL 90/90/90<br>brick veneer    | 21.0 | 90/90/90                         | FCO-0966 | as required | 26 + frame + cav + veneer    | 58 | 63 | R2 GW<br>wall batt<br>90mm stud | 2.2 |
| TBV32F | 2x16mm Firestop pbd on timber<br>stud with external FRL 120/120/120<br>brick veneer | 26.0 | 120/120/120                      | FCO-0966 | as required | 32 + frame + cav + veneer    | 60 | 65 | R2 GW<br>wall batt<br>90mm stud | 2.3 |

## » External Wall Systems - Brick Veneer



System SBV10 illustrated

| SBV10  | 1x10mm Std Core pbd on steel stud<br>with external FRL 60/60/60 brick<br>veneer    | 6.8  | 60/60/60<br>from outside<br>only | NA | as required | 10 + frame + cav + veneer    | 50 | 52 | R1.5 GW<br>wall batt<br>75mm stud | 1.3 |
|--------|------------------------------------------------------------------------------------|------|----------------------------------|----|-------------|------------------------------|----|----|-----------------------------------|-----|
| SBV10A | 1x10mm Soundstop pbd on steel<br>stud with external non fire rated<br>brick veneer | 8.2  | Nil                              | NA | as required | 10 + frame + cav + veneer    | 51 | 54 | R1.5 GW<br>wall batt<br>75mm stud | 1.3 |
| SBV20A | 2x10mm Soundstop pbd on steel<br>stud with external non fire rated<br>brick veneer | 16.4 | Nil                              | NA | as required | 20 + frame +<br>cav + veneer | 54 | 59 | R1.5 GW<br>wall batt<br>75mm stud | 1.4 |
| SBV26A | 2x13mm Soundstop on steel stud<br>with external non fire rated brick<br>veneer     | 22.4 | Nil                              | NA | as required | 26 + frame + cav. + veneer   | 46 | 61 | R1.5 GW<br>wall batt<br>75mm stud | 1.4 |

| B   System Index |            |             |             |          |          |              | PLASTE        | •         |           |            |                      |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-----------|------------|----------------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           | Acoustic  | c Ratings |            |                      |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | W/- Insul | Insulation | <i>R</i> Value       |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{W}$   | Туре       | (m <sup>2</sup> K/W) |

## External Wall Systems - Spandrel max height 1000mm



System SP2626F illustrated

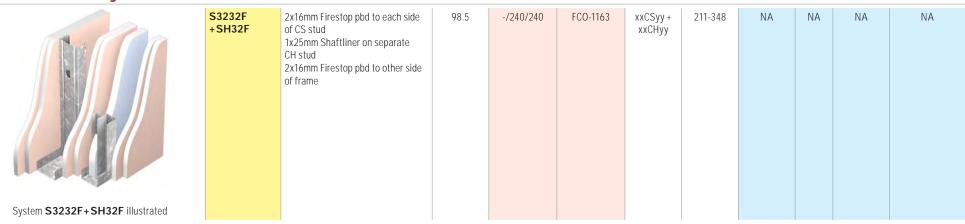
|         | 0/60  | FCO-0504R<br>FCO-0788R<br>(hanging)<br>FCO-0504R<br>FCO-0788R<br>(hanging) | 51<br>64<br>76<br>92<br>150<br>51<br>64 | 83<br>96<br>108<br>124<br>182<br>90 | NA NA NA NA NA NA NA | NA NA NA NA NA NA | NA NA NA NA NA NA NA | NA NA NA NA NA NA |
|---------|-------|----------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|----------------------|-------------------|----------------------|-------------------|
| -/90/   | 0/90  | (hanging)  FCO-0504R FCO-0788R                                             | 76<br>92<br>150<br>51                   | 108<br>124<br>182<br>90             | NA<br>NA<br>NA       | NA<br>NA<br>NA    | NA<br>NA<br>NA       | NA<br>NA<br>NA    |
| 5 -/90/ | 0/90  | FCO-0504R<br>FCO-0788R                                                     | 92<br>150<br>51                         | 124<br>182<br>90                    | NA<br>NA<br>NA       | NA<br>NA<br>NA    | NA<br>NA<br>NA       | NA<br>NA          |
| -/90/   | 0/90  | FCO-0788R                                                                  | 150<br>51                               | 182<br>90                           | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA                |
| -/90/   | 0/90  | FCO-0788R                                                                  | 51                                      | 90                                  | NA                   | NA                | NA                   |                   |
| -/90/   | 0/90  | FCO-0788R                                                                  |                                         |                                     |                      |                   |                      | NA                |
|         |       |                                                                            | 64                                      | 103                                 | NΙΛ                  | N.I.A.            |                      |                   |
|         |       | (nanging)                                                                  |                                         |                                     | IVA                  | NA                | NA                   | NA                |
|         |       |                                                                            | 76                                      | 115                                 | NA                   | NA                | NA                   | NA                |
|         |       |                                                                            | 92                                      | 131                                 | NA                   | NA                | NA                   | NA                |
|         |       |                                                                            | 150                                     | 189                                 | NA                   | NA                | NA                   | NA                |
| -/120/  | 0/120 | FCO-0504R                                                                  | 51                                      | 103                                 | NA                   | NA                | NA                   | NA                |
|         |       | FCO-0788R<br>(hanging)                                                     | 64                                      | 116                                 | NA                   | NA                | NA                   | NA                |
|         |       | (nanging)                                                                  | 76                                      | 128                                 | NA                   | NA                | NA                   | NA                |
|         |       |                                                                            | 92                                      | 144                                 | NA                   | NA                | NA                   | NA                |
|         |       | -                                                                          | 150                                     | 202                                 | NA                   | NA                | NA                   | NA                |
|         |       |                                                                            |                                         |                                     |                      |                   |                      |                   |
|         |       |                                                                            |                                         |                                     |                      |                   |                      |                   |
|         |       |                                                                            |                                         | 92                                  | 92 144               | 92 144 NA         | 92 144 NA NA         | 92 144 NA NA NA   |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

## » External Wall Systems - Spandrel max height 1000mm



System SP3232F illustrated

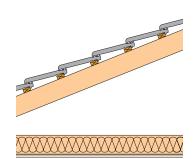

| SP3232 | F 2x16mm Firestop plasterboard to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |           |           |     |     |    |    |    |    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------|-----|-----|----|----|----|----|
|        | The state of the s | 52.0 | -/180/180 | FCO-0504R | 51  | 115 | NA | NA | NA | NA |
|        | each side of steel spandrel frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |           | 64  | 128 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           | 76  | 140 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           | 92  | 156 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           | 150 | 214 | NA | NA | NA | NA |
| SP3245 | The state of the s | 62.5 | -/180/180 | FCO-0788R | 51  | 115 | NA | NA | NA | NA |
|        | each side of steel spandrel frame, additional 1x13mm Firestop to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |           | (hanging) | 64  | 128 | NA | NA | NA | NA |
|        | interior face only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           |           | 76  | 140 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           | 92  | 156 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           | 150 | 214 | NA | NA | NA | NA |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           |     |     |    |    |    |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           |     |     |    |    |    |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           |     |     |    |    |    |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           |     |     |    |    |    |    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |           |     |     |    |    |    |    |

| B   System Index |            |             |             |          |          | Sele         | ctor+         | PLASTE    | RBOAF       | RD SYSTE                   | MS         |
|------------------|------------|-------------|-------------|----------|----------|--------------|---------------|-----------|-------------|----------------------------|------------|
|                  |            |             | Approx      | Fire Res | sistance |              | Nom           | Acou      | ıstic Ra    | itings                     |            |
|                  |            |             | Pbd<br>Mass |          |          | Stud<br>Size | Wall<br>Width | Nil Insul | W/- I       | nsulation                  | Insulation |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | (mm)         | (mm)          | $R_{W}$   | $R_{\rm W}$ | $R_{\rm w}$ + $C_{\rm tr}$ | Туре       |

#### **Subfloor Separation**



# **Hybrid Wall System - 4 Hour Fire Rated**




<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Heights refer Section C

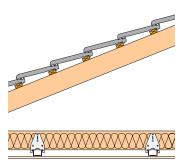
This page left blank intentionally.

| B   System Index |            |             |             |          | Select   | or+ P     | LASTE   | RBOARD S                   | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-----------|---------|----------------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |           | А       | coustic Ra                 | tings           |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul | With    | Insulation                 |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation Type |

## **Ceilings Under Tile Roof - Direct Fixed**



System C10U illustrated


| C10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 34 | 43 | 37 | R2.5 GW ceiling batt |
|------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----------------------|
| C10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 33 | 42 | 36 | R2.5 GW ceiling batt |
| C13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 34 | 43 | 37 | R2.5 GW ceiling batt |
| C13A | 1x13mm Soundstop pbd                                  | 11.2 | Nil                                      | NA                              | 35 | 44 | 38 | R2.5 GW ceiling batt |
| C13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 35 | 44 | 38 | R2.5 GW ceiling batt |
| C16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 36 | 45 | 39 | R2.5 GW ceiling batt |
| C20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 38 | 47 | 41 | R2.5 GW ceiling batt |
| C26F | 2x13mm Firestop                                       | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 40 | 49 | 43 | R2.5 GW ceiling batt |
| C29F | 13+16mm Firestop pbd                                  | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 40 | 49 | 43 | R2.5 GW ceiling batt |
| C32F | 2x16mm Firestop                                       | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658                        | 41 | 50 | 44 | R2.5 GW ceiling batt |
| C48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 44 | 53 | 47 | R2.5 GW ceiling batt |
| C64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 44 | 53 | 47 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            | Selector+ PLASTERBOARD SYS |            |             |          |          |           |         | SYSTEMS                    |                 |
|------------------|------------|----------------------------|------------|-------------|----------|----------|-----------|---------|----------------------------|-----------------|
|                  |            |                            |            | Approx      | Fire Res | sistance |           | А       | coustic Ra                 | tings           |
|                  |            |                            |            | Pbd<br>Mass |          |          | Nil Insul | With I  | nsulation                  |                 |
| Layout           | System Ref | De                         | escription | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation Type |

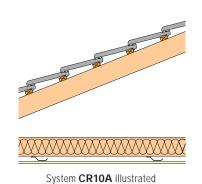
**B3** 

## **Ceilings Under Tile Roof - Furred**



System **CF10U** illustrated

| CF10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 36 | 45 | 39 | R2.5 GW ceiling batt |
|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----------------------|
| CF10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 35 | 44 | 38 | R2.5 GW ceiling batt |
| CF13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 36 | 45 | 39 | R2.5 GW ceiling batt |
| CF13A | 1x13mm Soundstop pbd                                  | 11.2 | Nil                                      | NA                              | 37 | 46 | 40 | R2.5 GW ceiling batt |
| CF16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 38 | 47 | 41 | R2.5 GW ceiling batt |
| CF20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 40 | 49 | 43 | R2.5 GW ceiling batt |
| CF26A | 2x13mm Soundstop pbd                                  | 22.4 | Nil                                      | NA                              | 42 | 51 | 45 | R2.5 GW ceiling batt |
| CF26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 42 | 51 | 45 | R2.5 GW ceiling batt |
| CF29F | 13mm Firestop pbd + 16mm Firestop pbd                 | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 42 | 51 | 45 | R2.5 GW ceiling batt |
| CF32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658                        | 43 | 52 | 46 | R2.5 GW ceiling batt |
| CF48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 46 | 55 | 49 | R2.5 GW ceiling batt |
| CF64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 46 | 55 | 49 | R2.5 GW ceiling batt |

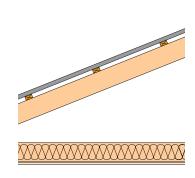

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          | Select   | or+ P     | LASTE   | RBOARD S                     | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-----------|---------|------------------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |           | А       | coustic Ra                   | tings           |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul | With    | Insulation                   |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | Insulation Type |

#### **Ceilings Under Tile Roof - Furred on Acoustic Mounts**



## **Ceilings Under Tile Roof - on Resilient Channels**

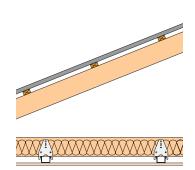



| CR10A | 1x10mm Soundstop pbd | 8.2  | Nil                                  | NA                   | 38 | 47 | 41 | R2.5 GW ceiling batt |
|-------|----------------------|------|--------------------------------------|----------------------|----|----|----|----------------------|
| CR13A | 1x13mm Soundstop pbd | 11.2 | Nil                                  | NA                   | 39 | 48 | 42 | R2.5 GW ceiling batt |
| CR16F | 1x16mm Firestop pbd  | 13.0 | 30/30/30<br>from below<br>RISF 30min | FCO-1658<br>FCO-0568 | 40 | 49 | 43 | R2.5 GW ceiling batt |
| CR20A | 2x10mm Soundstop pbd | 16.4 | Nil                                  | NA                   | 42 | 51 | 45 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

**B3** 

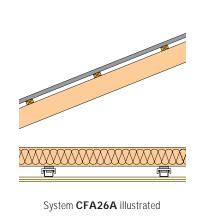
#### **Ceilings Under Metal Roof - Direct Fixed**




System C10U illustrated

| C10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 32 | 41 | 34 | R2.5 GW ceiling batt |
|------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----------------------|
| C13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 33 | 42 | 35 | R2.5 GW ceiling batt |
| C16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 35 | 44 | 37 | R2.5 GW ceiling batt |
| C26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 39 | 48 | 41 | R2.5 GW ceiling batt |
| C29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 39 | 48 | 41 | R2.5 GW ceiling batt |
| C32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658                        | 40 | 49 | 42 | R2.5 GW ceiling batt |
| C48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 43 | 52 | 45 | R2.5 GW ceiling batt |
| C64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 43 | 52 | 45 | R2.5 GW ceiling batt |

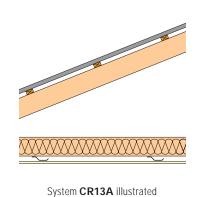
| B   System Index |            |  |             | Select                                 | or+ P | LASTE | RBOARD S         | SYSTEMS |                            |                 |
|------------------|------------|--|-------------|----------------------------------------|-------|-------|------------------|---------|----------------------------|-----------------|
|                  |            |  | Approx      | Approx Fire Resistance Acoustic Rating |       |       |                  |         | tings                      |                 |
|                  |            |  |             | Pbd<br>Mass                            |       |       | Nil Insul        | With I  | nsulation                  |                 |
| Layout           | System Ref |  | Description | (kg/m²)                                | FRL   | Basis | $R_{\mathrm{W}}$ | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation Type |


## **Ceilings Under Metal Roof - Furred**



System **CF10U** illustrated

| CF10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 34 | 43 | 36 | R2.5 GW ceiling batt |
|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----------------------|
| CF13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 35 | 44 | 37 | R2.5 GW ceiling batt |
| CF16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 37 | 46 | 39 | R2.5 GW ceiling batt |
| CF20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 39 | 48 | 41 | R2.5 GW ceiling batt |
| CF26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 41 | 50 | 43 | R2.5 GW ceiling batt |
| CF29F | 13mm Firestop pbd + 16mm Firestop pbd                 | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 41 | 50 | 43 | R2.5 GW ceiling batt |
| CF32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658                        | 42 | 51 | 44 | R2.5 GW ceiling batt |
| CF48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 45 | 54 | 47 | R2.5 GW ceiling batt |
| CF64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 45 | 44 | 47 | R2.5 GW ceiling batt |

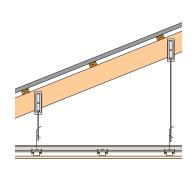

#### **Ceilings Under Metal Roof - Furred on Acoustic Mounts**



| CFA20A | 2x10mm Soundstop pbd<br>Acoustic mount | 16.4 | Nil | NA | 41 | 50 | 43 | R2.5 GW ceiling batt |
|--------|----------------------------------------|------|-----|----|----|----|----|----------------------|
| CFA26A | 2x13mm Soundstop pbd Acoustic mount    | 22.4 | Nil | NA | 42 | 51 | 44 | R2.5 GW ceiling batt |
|        |                                        |      |     |    |    |    |    |                      |

| B   System Index |            | Selector+ PLASTERBOARD SYSTEM |             |          |          |           |         |                            |                 |
|------------------|------------|-------------------------------|-------------|----------|----------|-----------|---------|----------------------------|-----------------|
|                  |            |                               | Approx      | Fire Res | sistance |           | А       | coustic Ra                 | tings           |
|                  |            |                               | Pbd<br>Mass |          |          | Nil Insul | With I  | nsulation                  |                 |
| Layout           | System Ref | Description                   | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C $_{\rm tr}$ | Insulation Type |

# **Ceilings Under Metal Roof - on Resilient Channels**




| CR10A | 1x10mm Soundstop pbd     | 8.2  | Nil                                  | NA                   | 37 | 46 | 39 | R2.5 GW ceiling batt |
|-------|--------------------------|------|--------------------------------------|----------------------|----|----|----|----------------------|
| CR13A | 1x13mm Soundstop pbd     | 11.2 | Nil                                  | NA                   | 38 | 47 | 40 | R2.5 GW ceiling batt |
| CR16F | 1x16mm Firestop pbd      | 13.0 | 30/30/30<br>from below<br>RISF 30min | FCO-1658<br>FCO-0568 | 39 | 48 | 41 | R2.5 GW ceiling batt |
| CR20A | 2x10mm Soundstop pbd     | 16.4 | Nil                                  | NA                   | 41 | 50 | 43 | R2.5 GW ceiling batt |
| CR26F | 2x13mm Firestop pbd      | 21.0 | 60/60/60<br>from below<br>RISF 30min | FCO-1658             | 43 | 52 | 45 | R2.5 GW ceiling batt |
| CR29F | 13mm + 16mm Firestop pbd | 23.5 | 60/60/60<br>from below<br>RISF 60min | FCO-1658             | 43 | 52 | 45 | R2.5 GW ceiling batt |
| CR32F | 2x16mm Firestop pbd      | 26.0 | 90/90/90<br>from below<br>RISF 60min | FCO-1658             | 44 | 53 | 46 | R2.5 GW ceiling batt |

| B   System Index |            |     | <b>Selector+</b> PLASTERBOARD SYSTE |             |          |          |                            |         |                              |                 |  |
|------------------|------------|-----|-------------------------------------|-------------|----------|----------|----------------------------|---------|------------------------------|-----------------|--|
|                  |            |     |                                     | Approx      | Fire Res | sistance |                            | А       | coustic Ra                   | ıtings          |  |
|                  |            |     |                                     | Pbd<br>Mass |          |          | Nil Insul                  | With    | Insulation                   |                 |  |
| Layout           | System Ref | Des | cription                            | (kg/m²)     | FRL      | Basis    | $R_{\scriptscriptstyle W}$ | $R_{W}$ | $R_{\rm w}$ +C <sub>tr</sub> | Insulation Type |  |

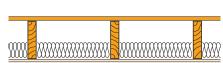
**B3** 

# **Ceilings Under Metal Roof - Suspended**



System CS10U illustrated

| CS10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 35 | 44 | 37 | R2.5 GW ceiling batt |
|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----------------------|
| CS13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 36 | 45 | 38 | R2.5 GW ceiling batt |
| CS16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 38 | 47 | 40 | R2.5 GW ceiling batt |
| CS20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 40 | 49 | 42 | R2.5 GW ceiling batt |
| CS26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 42 | 51 | 44 | R2.5 GW ceiling batt |
| CS29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 42 | 51 | 44 | R2.5 GW ceiling batt |
| CS32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658                        | 43 | 52 | 45 | R2.5 GW ceiling batt |
| CS48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 46 | 55 | 48 | R2.5 GW ceiling batt |
| CS64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 46 | 55 | 48 | R2.5 GW ceiling batt |


| B   System Index |            | Selector+ PLASTERBOARD SYSTEMS |             |          |       |           |            |                            |                 |
|------------------|------------|--------------------------------|-------------|----------|-------|-----------|------------|----------------------------|-----------------|
|                  |            | Approx                         | Fire Res    | sistance |       | А         | coustic Ra | tings                      |                 |
|                  |            |                                | Pbd<br>Mass |          |       | Nil Insul | With I     | nsulation                  |                 |
| Layout           | System Ref | Description                    | (kg/m²)     | FRL      | Basis | $R_{W}$   | $R_{W}$    | $R_{\rm W}$ +C $_{\rm tr}$ | Insulation Type |

# **Ceilings Under Metal Roof - Suspended on Acoustic Mounts**



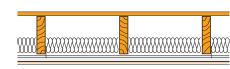
| B   System Index |            |             |             |          |          | Selecti   | or+         | PLASTE                       | RBOARD S           | SYSTEMS         |  |
|------------------|------------|-------------|-------------|----------|----------|-----------|-------------|------------------------------|--------------------|-----------------|--|
|                  |            |             | Approx      | Fire Res | sistance |           |             | Acous                        | tic Ratings        |                 |  |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul | ,           | With Insula                  | ntion              |                 |  |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{I}$ | Insulation Type |  |

# **Ceilings Under Bare Timber Floor - Direct Fixed**



System C10U illustrated

#### NOTES:


- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.

| C10  | 1x10mm Std Core pbd                                   | 6.8  | Nil                                      | NA                              | 29 | 30 | 24 | 85 | R2.5 GW ceiling batt |
|------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
| C10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 30 | 31 | 25 | 84 | R2.5 GW ceiling batt |
| C10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 29 | 30 | 24 | 85 | R2.5 GW ceiling batt |
| C13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 30 | 31 | 25 | 84 | R2.5 GW ceiling batt |
| C13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC.           | FCO-1658                        | 32 | 33 | 27 | 82 | R2.5 GW ceiling batt |
| C16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 33 | 34 | 28 | 81 | R2.5 GW ceiling batt |
| C20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 35 | 36 | 30 | 79 | R2.5 GW ceiling batt |
| C26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 36 | 37 | 31 | 78 | R2.5 GW ceiling batt |
| C29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 37 | 38 | 32 | 77 | R2.5 GW ceiling batt |
| C32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 38 | 39 | 33 | 76 | R2.5 GW ceiling batt |
| C48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 42 | 43 | 37 | 74 | R2.5 GW ceiling batt |
| C64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 44 | 45 | 39 | 72 | R2.5 GW ceiling batt |

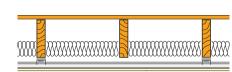
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          |       | Select    | or+         | PLASTE                       | RBOARD             | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|-------|-----------|-------------|------------------------------|--------------------|-----------------|
|                  |            | Approx      | Fire Res    | sistance |       |           | Acous       | tic Ratings                  |                    |                 |
|                  |            |             | Pbd<br>Mass |          |       | Nil Insul |             | With Insula                  | ation              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,W}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Bare Timber Floor - Furred**



System CF10U illustrated


#### NOTES:

- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Furring channel housed in a direct fixing clip arrangement.

|   | CF10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 40 | 47 | 40 | 69 | R2.5 GW ceiling batt |
|---|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
|   | CF13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 41 | 48 | 41 | 68 | R2.5 GW ceiling batt |
| - | CF13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC.           | FCO-1658                        | 43 | 50 | 43 | 66 | R2.5 GW ceiling batt |
| 2 | CF16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 44 | 51 | 44 | 65 | R2.5 GW ceiling batt |
|   | CF26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 47 | 54 | 47 | 62 | R2.5 GW ceiling batt |
|   | CF29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 48 | 55 | 48 | 61 | R2.5 GW ceiling batt |
|   | CF32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 49 | 56 | 49 | 60 | R2.5 GW ceiling batt |
|   | CF48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 53 | 60 | 53 | 58 | R2.5 GW ceiling batt |
|   | CF64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 55 | 62 | 55 | 56 | R2.5 GW ceiling batt |

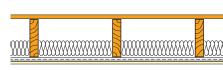
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

### **Ceilings Under Bare Timber Floor - Furred on Acoustic Mounts**



System CFA13A illustrated

#### NOTES:


- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Boral Acoustic Ceiling Mount.

| CFA10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 42 | 49 | 43 | 64 | R2.5 GW ceiling batt |
|--------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
| CFA13A | 1x13mm Soundstop pbd                                  | 11.2 | Nil                                      | NA                              | 44 | 51 | 45 | 62 | R2.5 GW ceiling batt |
| CFA13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 44 | 51 | 45 | 63 | R2.5 GW ceiling batt |
| CFA16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 45 | 52 | 46 | 61 | R2.5 GW ceiling batt |
| CFA20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 47 | 54 | 48 | 60 | R2.5 GW ceiling batt |
| CFA26A | 2x13mm Soundstop pbd                                  | 22.4 | Nil                                      | NA                              | 49 | 56 | 50 | 58 | R2.5 GW ceiling batt |
| CFA26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 48 | 55 | 49 | 59 | R2.5 GW ceiling batt |
| CFA29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 49 | 56 | 50 | 58 | R2.5 GW ceiling batt |
| CFA32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 50 | 57 | 51 | 57 | R2.5 GW ceiling batt |
| CFA48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 54 | 61 | 55 | 55 | R2.5 GW ceiling batt |
| CFA64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 56 | 63 | 57 | 53 | R2.5 GW ceiling batt |

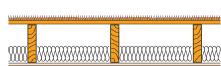
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          |       | Select    | or+         | PLASTE                       | RBOARD S           | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|-------|-----------|-------------|------------------------------|--------------------|-----------------|
|                  |            | Approx      | Fire Res    | sistance |       |           | Acous       | tic Ratings                  |                    |                 |
|                  |            |             | Pbd<br>Mass |          |       | Nil Insul |             | With Insula                  | ation              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis | $R_{W}$   | $R_{\rm W}$ | $R_{\rm w}$ +C <sub>tr</sub> | $L_{n,W}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Bare Timber Floor - on Resilient Channels**



System CR13A illustrated


#### NOTES:

- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.

|   | CR10A | 1x10mm Soundstop pbd     | 8.2  | Nil                                  | NA                   | 42 | 49 | 43 | 66 | R2.5 GW ceiling batt |
|---|-------|--------------------------|------|--------------------------------------|----------------------|----|----|----|----|----------------------|
|   | CR13A | 1x13mm Soundstop pbd     | 11.2 | Nil                                  | NA                   | 44 | 51 | 45 | 64 | R2.5 GW ceiling batt |
| _ | CR13F | 1x13mm Firestop pbd      | 10.5 | 30/30/30<br>from below<br>FPC        | FCO-1658             | 44 | 51 | 45 | 64 | R2.5 GW ceiling batt |
| ₩ | CR16F | 1x16mm Firestop pbd      | 13.0 | 30/30/30<br>from below<br>RISF 30min | FCO-1658<br>FCO-0568 | 45 | 52 | 46 | 63 | R2.5 GW ceiling batt |
|   | CR20A | 2x10mm Soundstop pbd     | 16.4 | Nil                                  | NA                   | 47 | 54 | 48 | 61 | R2.5 GW ceiling batt |
|   | CR26A | 2x13mm Soundstop         | 22.4 | Nil                                  | NA                   | 49 | 56 | 50 | 59 | R2.5 GW ceiling batt |
|   | CR26F | 2x13mm Firestop pbd      | 21.0 | 60/60/60<br>from below<br>RISF 30min | FCO-1658             | 48 | 55 | 49 | 60 | R2.5 GW ceiling batt |
|   | CR29F | 13mm + 16mm Firestop pbd | 23.5 | 60/60/60<br>from below<br>RISF 60min | FCO-1658             | 49 | 56 | 50 | 59 | R2.5 GW ceiling batt |
|   | CR32F | 2x16mm Firestop pbd      | 26.0 | 90/90/90<br>from below<br>RISF 60min | FCO-1658<br>FCO-0629 | 50 | 57 | 51 | 58 | R2.5 GW ceiling batt |

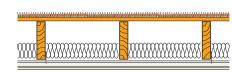
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

### **Ceilings Under Carpeted Timber Floor - Direct Fixed**



System C10U illustrated

#### NOTES:


- An underlay used under carpet
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.

| C10  | 1x10mm Std Core pbd                             | 6.8  | Nil                                      | NA                              | 30 | 31 | 25 | 58 | R2.5 GW ceiling batt |
|------|-------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
| C10A | 1x10mm Soundstop pbd                            | 8.2  | Nil                                      | NA                              | 31 | 32 | 26 | 57 | R2.5 GW ceiling batt |
| C10U | 1x10mm Unispan pbd                              | 7.2  | Nil                                      | NA                              | 30 | 31 | 25 | 58 | R2.5 GW ceiling batt |
| C13  | 1x13mm Std Core pbd                             | 8.6  | Nil                                      | NA                              | 31 | 32 | 26 | 56 | R2.5 GW ceiling batt |
| C13A | 1x13mm Soundstop pbd                            | 11.2 | Nil                                      | NA                              | 33 | 34 | 28 | 55 | R2.5 GW ceiling batt |
| C13F | 1x13mm Firestop pbd                             | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 33 | 34 | 28 | 55 | R2.5 GW ceiling batt |
| C16F | 1x16mm Firestop pbd                             | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCo-0568            | 34 | 35 | 29 | 54 | R2.5 GW ceiling batt |
| C20A | 2x10mm Soundstop pbd                            | 16.4 | Nil                                      | NA                              | 36 | 37 | 31 | 52 | R2.5 GW ceiling batt |
| C26F | 2x13mm Firestop pbd                             | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 37 | 38 | 32 | 51 | R2.5 GW ceiling batt |
| C29F | 13mm + 16mm Firestop pbd                        | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 38 | 39 | 33 | 50 | R2.5 GW ceiling batt |
| C32F | 2x16mm Firestop pbd                             | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 39 | 40 | 34 | 49 | R2.5 GW ceiling batt |
| C48F | 3x16mm Firestop pbd                             | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 43 | 44 | 38 | 47 | R2.5 GW ceiling batt |
| C64F | 2x16mm Firestop pbd Furring 2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 45 | 46 | 40 | 45 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

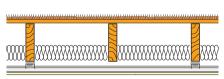
| B   System Index |            |             |                 |          | Select   | or+       | PLASTE  | RBOARD S                   | SYSTEMS        |                 |
|------------------|------------|-------------|-----------------|----------|----------|-----------|---------|----------------------------|----------------|-----------------|
|                  |            |             |                 | Fire Res | sistance |           |         | Acous                      | tic Ratings    |                 |
|                  |            |             |                 |          |          | Nil Insul |         | With Insula                | ation          |                 |
| Layout           | System Ref | Description | Mass<br>(kg/m²) | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $L_{n,W}^+C_I$ | Insulation Type |

# **Ceilings Under Carpeted Timber Floor - Furred**



System CF10U illustrated

#### NOTES:


- An underlay used under carpet
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Furring channel housed in a direct fixing clip arrangement.

| CF10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 42 | 49 | 42 | 41 | R2.5 GW ceiling batt |
|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
| CF10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 41 | 48 | 41 | 42 | R2.5 GW ceiling batt |
| CF13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 42 | 49 | 42 | 40 | R2.5 GW ceiling batt |
| CF13A | 1x13mm Soundstop pbd                                  | 11.2 | Nil                                      | NA                              | 44 | 51 | 44 | 39 | R2.5 GW ceiling batt |
| CF13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 44 | 51 | 44 | 39 | R2.5 GW ceiling batt |
| CF16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 45 | 52 | 45 | 38 | R2.5 GW ceiling batt |
| CF20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 47 | 54 | 47 | 36 | R2.5 GW ceiling batt |
| CF26A | 2x13mm Soundstop pbd                                  | 22.4 | Nil                                      | NA                              | 49 | 56 | 49 | 34 | R2.5 GW ceiling batt |
| CF26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 48 | 55 | 48 | 35 | R2.5 GW ceiling batt |
| CF29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 49 | 56 | 49 | 34 | R2.5 GW ceiling batt |
| CF32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 50 | 57 | 50 | 33 | R2.5 GW ceiling batt |
| CF48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 54 | 60 | 54 | 31 | R2.5 GW ceiling batt |
| CF64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 56 | 62 | 56 | 29 | R2.5 GW ceiling batt |

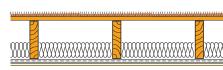
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          | Selecto  | or+     | PLASTE  | RBOARD S                     | SYSTEMS            |                 |
|------------------|------------|-------------|-------------|----------|----------|---------|---------|------------------------------|--------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |         |         | Acous                        | tic Ratings        |                 |
|                  |            |             | Pbd<br>Mass |          |          |         | ,       | With Insula                  | ation              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$ | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Carpeted Timber Floor - Furred on Acoustic Mounts**



System CFA13A illustrated


|   | CFA10A | 1x10mm Soundstop pbd     | 8.2  | Nil                                     | NA                              | 43 | 50 | 44 | 37 | R2.5 GW ceiling batt |
|---|--------|--------------------------|------|-----------------------------------------|---------------------------------|----|----|----|----|----------------------|
|   | CFA13A | 1x13mm Soundstop pbd     | 11.2 | Nil                                     | NA                              | 45 | 52 | 46 | 35 | R2.5 GW ceiling batt |
|   | CFA20A | 2x10mm Soundstop pbd     | 16.4 | Nil                                     | NA                              | 48 | 55 | 49 | 33 | R2.5 GW ceiling batt |
| ) | CFA26A | 2x13mm Soundstop pbd     | 22.4 | Nil                                     | NA                              | 49 | 57 | 51 | 31 | R2.5 GW ceiling batt |
| [ | CFA26F | 2x13mm Firestop pbd      | 21.0 | 60/60/60<br>from below<br>RISF 30min    | FCO-1658                        | 49 | 56 | 50 | 32 | R2.5 GW ceiling batt |
|   | CFA29F | 13mm + 16mm Firestop pbd | 23.5 | 60/60/60<br>from below<br>RISF 60min    | FCO-1658                        | 50 | 57 | 51 | 31 | R2.5 GW ceiling batt |
|   | CFA32F | 2x16mm Firestop pbd      | 26.0 | 90/90/90<br>from below<br>RISF 60min    | FCO-1658<br>FCO-0629            | 51 | 58 | 52 | 30 | R2.5 GW ceiling batt |
|   | CFA48F | 3x16mm Firestop pbd      | 39.0 | 120/120/120<br>from below<br>RISF 90min | SI 1891<br>FTO-0029<br>FCO-1658 | 55 | 61 | 56 | 28 | R2.5 GW ceiling batt |

#### NOTES:

- · An underlay used under carpet
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Boral Acoustic Ceiling Mount.

| B   System Index |            |             |             |          | Select | or+       | PLASTE  | RBOARD S                     | SYSTEMS            |                 |
|------------------|------------|-------------|-------------|----------|--------|-----------|---------|------------------------------|--------------------|-----------------|
|                  |            | Approx      | Fire Res    | sistance |        |           | Acous   | tic Ratings                  |                    |                 |
|                  |            |             | Pbd<br>Mass |          |        | Nil Insul | ,       | With Insula                  | ntion              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis  | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Carpeted Timber Floor - on Resilient Channels**

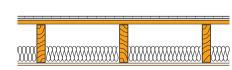


System CR13A illustrated

#### NOTES:

Acoustic ratings based on:

- An underlay used under carpet
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.


|           | CR10A | 1x10mm Soundstop pbd     | 8.2  | Nil                                  | NA                   | 43 | 50 | 44 | 39 | R2.5 GW ceiling batt |
|-----------|-------|--------------------------|------|--------------------------------------|----------------------|----|----|----|----|----------------------|
|           | CR13A | 1x13mm Soundstop pbd     | 11.2 | Nil                                  | NA                   | 45 | 52 | 46 | 37 | R2.5 GW ceiling batt |
| <u>**</u> | CR13F | 1x13mm Firestop pbd      | 10.5 | 30/30/30<br>from below<br>FPC        | FCO-1658             | 45 | 52 | 48 | 37 | R2.5 GW ceiling batt |
| ≟         | CR16F | 1x16mm Firestop pbd      | 13.0 | 30/30/30<br>from below<br>RISF 30min | FCO-1658<br>FCO-0568 | 46 | 53 | 47 | 36 | R2.5 GW ceiling batt |
|           | CR20A | 2x10mm Soundstop pbd     | 16.4 | Nil                                  | NA                   | 48 | 55 | 49 | 34 | R2.5 GW ceiling batt |
|           | CR26F | 2x13mm Firestop pbd      | 21.0 | 60/60/60<br>from below<br>RISF 30min | FCO-1658             | 49 | 56 | 50 | 33 | R2.5 GW ceiling batt |
|           | CR29F | 13mm + 16mm Firestop pbd | 23.5 | 60/60/60<br>from below<br>RISF 60min | FCO-1658             | 50 | 57 | 51 | 32 | R2.5 GW ceiling batt |
|           | CR32F | 2x16mm Firestop pbd      | 26.0 | 90/90/90<br>from below<br>RISF 60min | FCO-1658<br>FCO-0629 | 51 | 58 | 52 | 31 | R2.5 GW ceiling batt |

**B3** 

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

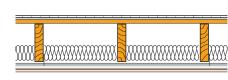
| B   System Index |            |             |             |          |          | Selecto   | or+         | PLASTE                     | RBOARD S           | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-----------|-------------|----------------------------|--------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |           |             | Acous                      | tic Ratings        |                 |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul | ,           | With Insula                | ition              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm w}$ + $C_{\rm tr}$ | $L_{n,w}^{+}C_{l}$ | Insulation Type |

# **Ceilings Under Tiled Timber Floor - Direct Fixed**



System C10U illustrated

#### NOTES:


- 6mm thick ceramic tiles laid on 6mm thick cement sheet having a total mass nom 15kg/m<sup>2</sup>
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.

|     |    |                                                       | 1    |                                          |                                 |    |    |    |    |                      |
|-----|----|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
| C10 | )  | 1x10mm Std Core pbd                                   | 6.8  | Nil                                      | NA                              | 37 | 38 | 32 | 82 | R2.5 GW ceiling batt |
| C10 | U  | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 38 | 39 | 33 | 82 | R2.5 GW ceiling batt |
| C13 | 3  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 38 | 39 | 33 | 81 | R2.5 GW ceiling batt |
| C13 | BF | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 39 | 40 | 34 | 79 | R2.5 GW ceiling batt |
| C16 | ρF | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 39 | 40 | 34 | 78 | R2.5 GW ceiling batt |
| C20 | )A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 40 | 41 | 35 | 76 | R2.5 GW ceiling batt |
| C26 | òF | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 41 | 42 | 36 | 75 | R2.5 GW ceiling batt |
| C29 | )F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 42 | 43 | 37 | 74 | R2.5 GW ceiling batt |
| C32 | 2F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 42 | 43 | 37 | 73 | R2.5 GW ceiling batt |
| C48 | BF | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 45 | 46 | 40 | 71 | R2.5 GW ceiling batt |
| C64 | lF | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 47 | 48 | 42 | 69 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

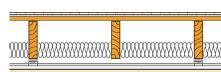
| B   System Index |                       |             |         |          | Select   | or+       | PLASTE  | RBOARD S         | SYSTEMS        |                 |
|------------------|-----------------------|-------------|---------|----------|----------|-----------|---------|------------------|----------------|-----------------|
|                  |                       |             |         | Fire Res | sistance |           |         | Acous            | tic Ratings    |                 |
|                  | Approx<br>Pbd<br>Mass |             |         |          |          | Nil Insul |         | With Insula      | ation          |                 |
| Layout           | System Ref            | Description | (kg/m²) | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +Ctr | $L_{n,w}^+C_I$ | Insulation Type |

### **Ceilings Under Tiled Timber Floor - Furred**



System CF10U illustrated

#### NOTES:


- 6mm thick ceramic tiles laid on 6mm thick cement sheet having a total mass nom 15kg/m²
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Furring channel housed in a direct fixing clip arrangement.

|          | CF10U | 1x10mm Unispan pbd                                    | 7.2  | Nil                                      | NA                              | 47 | 56 | 49 | 66 | R2.5 GW ceiling batt |
|----------|-------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
|          | CF13  | 1x13mm Std Core pbd                                   | 8.6  | Nil                                      | NA                              | 49 | 56 | 49 | 65 | R2.5 GW ceiling batt |
|          | CF13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 50 | 57 | 50 | 63 | R2.5 GW ceiling batt |
| <b>∑</b> | CF16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 50 | 57 | 50 | 63 | R2.5 GW ceiling batt |
|          | CF26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 52 | 59 | 52 | 59 | R2.5 GW ceiling batt |
|          | CF29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 53 | 60 | 53 | 58 | R2.5 GW ceiling batt |
|          | CF32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 53 | 60 | 53 | 57 | R2.5 GW ceiling batt |
| t        | CF48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 56 | 63 | 56 | 55 | R2.5 GW ceiling batt |
|          | CF64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 58 | 65 | 58 | 53 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

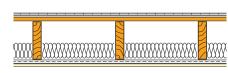
| B   System Index |            |             |             |          |          | Selecto   | or+         | PLASTE                     | RBOARD S       | SYSTEMS         |  |
|------------------|------------|-------------|-------------|----------|----------|-----------|-------------|----------------------------|----------------|-----------------|--|
|                  |            |             | Approx      | Fire Res | sistance |           |             | Acous                      | tic Ratings    |                 |  |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul |             | With Insula                | ntion          |                 |  |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $L_{n,w}^+C_I$ | Insulation Type |  |

# **Ceilings Under Tiled Timber Floor - Furred on Acoustic Mounts**



System CFA13A illustrated

#### NOTES:


- 6mm thick ceramic tiles laid on 6mm thick cement sheet having a total mass nom 15kg/m²
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists
- Boral Acoustic Ceiling Mount.

|          | CFA10A | 1x10mm Soundstop pbd                                  | 8.2  | Nil                                      | NA                              | 50 | 57 | 51 | 62 | R2.5 GW ceiling batt |
|----------|--------|-------------------------------------------------------|------|------------------------------------------|---------------------------------|----|----|----|----|----------------------|
|          | CFA13A | 1x13mm Soundstop pbd                                  | 11.2 | Nil                                      | NA                              | 51 | 58 | 52 | 60 | R2.5 GW ceiling batt |
|          | CFA13F | 1x13mm Firestop pbd                                   | 10.5 | 30/30/30<br>from below<br>FPC            | FCO-1658                        | 51 | 58 | 52 | 60 | R2.5 GW ceiling batt |
| <b>₩</b> | CFA16F | 1x16mm Firestop pbd                                   | 13.0 | 30/30/30<br>from below<br>RISF 30min     | FCO-1658<br>FCO-0568            | 51 | 58 | 52 | 59 | R2.5 GW ceiling batt |
|          | CFA20A | 2x10mm Soundstop pbd                                  | 16.4 | Nil                                      | NA                              | 52 | 59 | 53 | 57 | R2.5 GW ceiling batt |
|          | CFA26A | 2x13mm Soundstop pbd                                  | 22.4 | Nil                                      | NA                              | 54 | 61 | 55 | 55 | R2.5 GW ceiling batt |
|          | CFA26F | 2x13mm Firestop pbd                                   | 21.0 | 60/60/60<br>from below<br>RISF 30min     | FCO-1658                        | 53 | 60 | 54 | 56 | R2.5 GW ceiling batt |
|          | CFA29F | 13mm + 16mm Firestop pbd                              | 23.5 | 60/60/60<br>from below<br>RISF 60min     | FCO-1658                        | 54 | 61 | 55 | 55 | R2.5 GW ceiling batt |
|          | CFA32F | 2x16mm Firestop pbd                                   | 26.0 | 90/90/90<br>from below<br>RISF 60min     | FCO-1658<br>FCO-0629            | 54 | 61 | 55 | 54 | R2.5 GW ceiling batt |
| t        | CFA48F | 3x16mm Firestop pbd                                   | 39.0 | 120/120/120<br>from below<br>RISF 90min  | SI 1891<br>FTO-0029<br>FCO-1658 | 57 | 64 | 58 | 52 | R2.5 GW ceiling batt |
|          | CFA64F | 2x16mm Firestop pbd<br>Furring<br>2x16mm Firestop pbd | 52.0 | 120/120/120<br>from below<br>RISF 120min | FCO-1856                        | 59 | 66 | 60 | 50 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             |          | Select | or+       | PLASTE  | RBOARD S                     | SYSTEMS            |                 |
|------------------|------------|-------------|-------------|----------|--------|-----------|---------|------------------------------|--------------------|-----------------|
|                  |            | Approx      | Fire Res    | sistance |        |           | Acous   | tic Ratings                  |                    |                 |
|                  |            |             | Pbd<br>Mass |          |        | Nil Insul | ,       | With Insula                  | ation              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis  | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{l}$ | Insulation Type |

# **Ceilings Under Tiled Timber Floor - on Resilient Channels**



System CR13A illustrated

#### NOTES:

- 6mm thick ceramic tiles laid on 6mm thick cement sheet having a total mass nom 15kg/m²
- Minimum 19mm particleboard flooring
- Minimum 190mm deep joists.

|        | CR10A | 1x10mm Soundstop pbd     | 8.2  | Nil                                  | NA                   | 50 | 57 | 51 | 63 | R2.5 GW ceiling batt |
|--------|-------|--------------------------|------|--------------------------------------|----------------------|----|----|----|----|----------------------|
|        | CR13A | 1x13mm Soundstop pbd     | 11.2 | Nil                                  | NA                   | 51 | 58 | 52 | 61 | R2.5 GW ceiling batt |
| =      | CR13F | 1x13mm Firestop pbd      | 10.5 | 30/30/30<br>from below<br>FPC        | FCO-1658             | 51 | 58 | 52 | 61 | R2.5 GW ceiling batt |
| Ž<br>= | CR16F | 1x16mm Firestop pbd      | 13.0 | 30/30/30<br>from below<br>RISF 30min | FCO-1658<br>FCO-0568 | 51 | 58 | 52 | 60 | R2.5 GW ceiling batt |
|        | CR20A | 2x10mm Soundstop pbd     | 16.4 | Nil                                  | NA                   | 52 | 59 | 53 | 58 | R2.5 GW ceiling batt |
|        | CR26F | 2x13mm Firestop pbd      | 21.0 | 60/60/60<br>from below<br>RISF 30min | FCO-1658             | 53 | 60 | 54 | 57 | R2.5 GW ceiling batt |
|        | CR29F | 13mm + 16mm Firestop pbd | 23.5 | 60/60/60<br>from below<br>RISF 60min | FCO-1658             | 54 | 61 | 55 | 56 | R2.5 GW ceiling batt |
|        | CR32F | 2x16mm Firestop pbd      | 26.0 | 90/90/90<br>from below<br>RISF 60min | FCO-1658<br>FCO-0629 | 54 | 61 | 55 | 55 | R2.5 GW ceiling batt |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

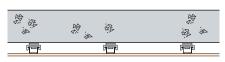
| <b>B</b>   System muex |            |             |             |          |          | Selecti   | or +        | PLASTE                       | KBUAKD S       | SYSTEIVIS       |  |
|------------------------|------------|-------------|-------------|----------|----------|-----------|-------------|------------------------------|----------------|-----------------|--|
|                        |            |             | Approx      | Fire Res | sistance |           |             | Acous                        | tic Ratings    |                 |  |
|                        |            |             | Pbd<br>Mass |          |          | Nil Insul |             | With Insula                  | ntion          |                 |  |
| Layout                 | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^+C_I$ | Insulation Type |  |

# **Ceilings Under Bare Concrete Floor - Furred**



System CF10U illustrated

| NOTES: |  |
|--------|--|


- Nom 150mm thick concrete slab
- Furring channel housed in furring channel clip.

| CF10U | 1x10mm Unispan pbd     | 7.2  | Floor only                               | NA       | 53 | 58 | 48 | 64 | 25G20, 25P20 |
|-------|------------------------|------|------------------------------------------|----------|----|----|----|----|--------------|
| CF13  | 1x13mm Std Core pbd    | 8.6  | Floor only                               | NA       | 53 | 58 | 48 | 62 | 25G20, 25P20 |
| CF13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below               | FCO-1658 | 53 | 58 | 49 | 62 | 25G20, 25P20 |
| CF16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min | FCO-1658 | 54 | 59 | 49 | 61 | 25G20, 25P20 |
| CF26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min | FCO-1658 | 56 | 62 | 51 | 59 | 25G20, 25P20 |
| CF29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min | FCO-1658 | 56 | 62 | 52 | 59 | 25G20, 25P20 |
| CF32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min | FCO-1658 | 57 | 63 | 53 | 58 | 25G20, 25P20 |
| CF48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below         | FCO-1658 | 58 | 63 | 54 | 58 | 25G20, 25P20 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

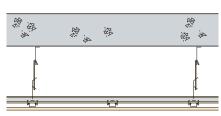
| B   System Index |            |             |             |          |          | Select    | or+         | PLASTE                     | RBOARD S       | SYSTEMS         |          |
|------------------|------------|-------------|-------------|----------|----------|-----------|-------------|----------------------------|----------------|-----------------|----------|
|                  |            |             | Approx      | Fire Res | sistance |           |             | Acous                      | tic Ratings    |                 |          |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul |             | With Insula                | ntion          |                 |          |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $L_{n,w}^+C_l$ | Insulation Type | <b>3</b> |

### **Ceilings Under Bare Concrete Floor - Furred on Acoustic Mounts**



System CFA10U illustrated

| NOTES | 3: |
|-------|----|
|-------|----|


- Nom 150mm thick concrete slab
- Furring channel housed in Boral Acoustic Ceiling Mount/Rondo Sound Isolation Mount STWC
- Nom 50mm ceiling cavity.

|   | CFA10U | 1x10mm Unispan pbd     | 7.2  | Floor only                                     | NA       | 53 | 55 | 51 | 59 | 50G11, 50P14 |
|---|--------|------------------------|------|------------------------------------------------|----------|----|----|----|----|--------------|
| _ | CFA13  | 1x13mm Std Core pbd    | 8.6  | Floor only                                     | NA       | 54 | 59 | 53 | 51 | 65P8         |
|   | CFA13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below                     | FCO-1658 | 54 | 60 | 54 | 52 | 50G11, 50P14 |
| = | CFA16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min       | FCO-1658 | 55 | 60 | 55 | 51 | 50G11, 50P14 |
|   | CFA26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min       | FCO-1658 | 57 | 60 | 55 | 49 | 50G11, 50P14 |
|   | CFA29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min       | FCO-1658 | 57 | 60 | 55 | 49 | 50G11, 50P14 |
| • | CFA32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min       | FCO-1658 | 58 | 60 | 55 | 49 | 50G11, 50P14 |
|   | CFA48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below<br>RISF 90min | FCO-1658 | 59 | 60 | 55 | 49 | 50G11, 50P14 |

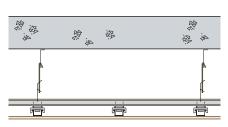
<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

| B   System Index |            |             |             |          |          | Selecte   | or+         | PLASTE                       | RBOARD S           | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-----------|-------------|------------------------------|--------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |           |             | Acous                        | tic Ratings        |                 |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul |             | With Insula                  | ition              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{\rm W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Bare Concrete Floor - Suspended**



System CS10U illustrated


| CS10U | 1x10mm Unispan pbd     | 7.2  | Floor only                                     | NA       | 54 | 59 | 52 | 51 | 70G11, 75P9 |
|-------|------------------------|------|------------------------------------------------|----------|----|----|----|----|-------------|
| CS13  | 1x13mm Std Core pbd    | 8.6  | Floor only                                     | NA       | 55 | 59 | 54 | 50 | 70G11, 75P9 |
| CS13A | 1x13mm Soundstop pbd   | 11.2 | Floor only                                     | NA       | 55 | 60 | 55 | 49 | 70G11, 75P9 |
| CS13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below                     | FCO-1658 | 55 | 59 | 54 | 49 | 70G11, 75P9 |
| CS16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min       | FCO-1658 | 55 | 60 | 55 | 49 | 70G11, 75P9 |
| CS20U | 2x10mm Unispan pbd     | 14.4 | Floor only                                     | NA       | 55 | 60 | 55 | 49 | 70G11, 75P9 |
| CS26  | 2x13mm Std Core pbd    | 17.2 | Floor only                                     | NA       | 56 | 60 | 55 | 49 | 75P9        |
| CS26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min       | FCO-1658 | 57 | 60 | 55 | 49 | 70G11, 75P9 |
| CS29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min       | FCO-1658 | 58 | 60 | 55 | 49 | 70G11, 75P9 |
| CS32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min       | FCO-1658 | 59 | 60 | 55 | 49 | 70G11, 75P9 |
| CS48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below<br>RISF 90min | FCO-1658 | 60 | 60 | 55 | 49 | 70G11, 75P9 |

#### NOTES:

- Nom 150mm thick concrete slab
- Min 100mm ceiling cavity.

| B   System Index |            |             |             |          | Select | or+       | PLASTE  | RBOARD S                     | SYSTEMS            |                 |
|------------------|------------|-------------|-------------|----------|--------|-----------|---------|------------------------------|--------------------|-----------------|
|                  |            | Approx      | Fire Res    | sistance |        |           | Acous   | tic Ratings                  |                    |                 |
|                  |            |             | Pbd<br>Mass |          |        | Nil Insul | ,       | With Insula                  | ntion              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis  | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{I}$ | Insulation Type |

# **Ceilings Under Bare Concrete Floor - Suspended on Acoustic Mounts**



System CSA13 illustrated

#### NOTES:

- Nom 150mm thick concrete slab
- Boral Acoustic Ceiling Mount / Rondo Sound Isolation Mount STWC
- Min 100mm ceiling cavity.

| _ |        |                        |      |                                                |          |    |    |    |    | 1           |
|---|--------|------------------------|------|------------------------------------------------|----------|----|----|----|----|-------------|
|   | CSA13  | 1x13mm Std Core pbd    | 8.6  | Floor only                                     | NA       | 55 | 59 | 54 | 49 | 75P9        |
|   | CSA13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below                     | FCO-1658 | 56 | 59 | 54 | 49 | 70G11, 75P9 |
|   | CSA16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min       | FCO-1658 | 57 | 60 | 55 | 49 | 70G11, 75P9 |
|   | CSA26A | 2x13mm Soundstop pbd   | 22.4 | Floor only                                     | NA       | 60 | 60 | 55 | 49 | 75P9        |
|   | CSA26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min       | FCO-1658 | 60 | 60 | 55 | 49 | 70G11, 75P9 |
|   | CSA29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min       | FCO-1658 | 60 | 60 | 55 | 49 | 70G11, 75P9 |
|   | CSA32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min       | FCO-1658 | 60 | 60 | 55 | 49 | 70G11, 75P9 |
|   | CSA48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below<br>RISF 90min | FCO-1658 | 60 | 60 | 55 | 49 | 70G11, 75P9 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4) • Bold acoustic ratings indicate a tested system

**B** | System Index **Selector+** PLASTERBOARD SYSTEMS

|        |            |             | Approx      | Fire Res | sistance | Acoustic Ratings |         |                            |                |                 |
|--------|------------|-------------|-------------|----------|----------|------------------|---------|----------------------------|----------------|-----------------|
|        |            |             | Pbd<br>Mass |          |          |                  | ,       | With Insulation            |                |                 |
| Layout | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$          | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $L_{n,w}^+C_1$ | Insulation Type |

**B3** 

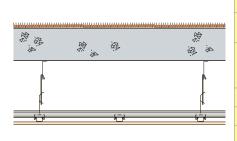
### **Ceilings Under Carpeted Concrete Floor - Furred**



System CF10U illustrated

#### NOTES:

Acoustic ratings based on:


- Nom 150mm thick concrete slab
- Furring channel housed in furring channel clip.

| CF10U | 1x10mm Unispan pbd     | 7.2  | Floor only                                     | NA       | 53 | 58 | 48 | <45 | 25G20        |
|-------|------------------------|------|------------------------------------------------|----------|----|----|----|-----|--------------|
| CF13  | 1x13mm Std Core pbd    | 8.6  | Floor only                                     | NA       | 53 | 58 | 48 | <45 | 25G20, 25P20 |
| CF13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below                     | FCO-1658 | 53 | 58 | 49 | <45 | 25G20, 25P20 |
| CF16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min       | FCO-1658 | 54 | 59 | 49 | <45 | 25G20, 25P20 |
| CF26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min       | FCO-1658 | 56 | 60 | 51 | <45 | 25G20, 25P20 |
| CF29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min       | FCO-1658 | 56 | 60 | 52 | <45 | 25G20, 25P20 |
| CF32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min       | FCO-1658 | 57 | 60 | 53 | <45 | 25G20, 25P20 |
| CF48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below<br>RISF 90min | FCO-1658 | 58 | 60 | 54 | <45 | 25G20, 25P20 |

Ceilings

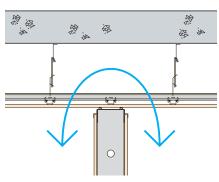
| B   System Index |            |             |             |          |          | Select    | or+     | PLASTE                       | RBOARD S           | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-----------|---------|------------------------------|--------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |           |         | Acous                        | tic Ratings        |                 |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul | ,       | With Insula                  | ation              |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $L_{n,w}^{+}C_{l}$ | Insulation Type |

# **Ceilings Under Carpeted Concrete Floor - Suspended**



System **CS10U** illustrated

| CS10U | 1x10mm Unispan pbd     | 7.2  | Floor only                                     | NA       | 53 | 58 | 52 | <45 | 70G11, 75P9 |
|-------|------------------------|------|------------------------------------------------|----------|----|----|----|-----|-------------|
| CS13  | 1x13mm Std Core pbd    | 8.6  | Floor only                                     | NA       | 55 | 59 | 54 | <45 | 70G11, 75P9 |
| CS13F | 1x13mm Firestop pbd    | 10.5 | Min 30/30/30<br>from below                     | FCO-1658 | 55 | 59 | 54 | <45 | 70G11, 75P9 |
| CS16F | 1x16mm Firestop pbd    | 13.0 | Min 30/30/30<br>from below<br>RISF 30min       | FCO-1658 | 55 | 60 | 55 | <45 | 70G11, 75P9 |
| CS20U | 2x10mm Unispan pbd     | 14.4 | Floor only                                     | NA       | 55 | 60 | 55 | <45 | 70G11, 75P9 |
| CS26  | 2x13mm Std Core pbd    | 17.2 | Floor only                                     | NA       | 56 | 60 | 55 | <45 | 70G11, 75P9 |
| CS26F | 2x13mm Firestop pbd    | 21.0 | Min 60/60/60<br>from below<br>RISF 30min       | FCO-1658 | 57 | 60 | 55 | <45 | 70G11, 75P9 |
| CS29F | 13mm+16mm Firestop pbd | 23.5 | Min 60/60/60<br>from below<br>RISF 60min       | FCO-1658 | 58 | 60 | 55 | <45 | 70G11, 75P9 |
| CS32F | 2x16mm Firestop pbd    | 26.0 | Min 90/90/90<br>from below<br>RISF 60min       | FCO-1658 | 59 | 60 | 55 | <45 | 70G11, 75P9 |
| CS48F | 3x16mm Firestop pbd    | 39.0 | Min<br>120/120/120<br>from below<br>RISF 90min | FCO-1658 | 60 | 60 | 55 | <45 | 70G11, 75P9 |


#### NOTES:

- Nom 150mm thick concrete slab
- Min 100mm ceiling cavity.

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

**B** | System Index Selector+ PLASTERBOARD SYSTEMS **Acoustic Ratings** Approx Pbd Nil Insulation With Insulation Mass System Ref Description  $(kg/m^2)$ **Insulation Type** Layout  $D_{n,c,w}$  $D_{\rm n.c.w}$ 

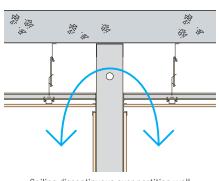
### Over Partition, Room-to-Room Via Ceiling



Ceiling continuous over partition wall

System COCT10U illustrated

#### NOTES:


- Acoustic ratings based on nom 650mm plenum depth
- Junction of wall to suspended ceiling acoustically sealed
- Insulation to extend min 1200mm from each side of the wall
- To ensure that the acoustic performance of the wall is not degraded significantly by the flanking through the ceiling path, the D<sub>n,c,w</sub> of the ceiling should be min 3dB higher than the Rw of the wall
- Penetrations such as return air grilles and recessed light fittings may degrade the stated acoustic performance.

|          | 1100111 1 | ia ocining                                                                                          |      |    |    |               |
|----------|-----------|-----------------------------------------------------------------------------------------------------|------|----|----|---------------|
|          | COCT10U   | 1x10mm Boral lay-in infill ceiling panel in Rondo DUO two-way exposed suspended ceiling grid system | 7.2  | 35 | 40 | 90G14, 100P14 |
|          | COC10U    | 1x10mm Boral Unispan pbd fixed to Rondo KEY-LOCK concealed ceiling grid system                      | 7.2  | 37 | 43 | 90G14, 100P14 |
|          | COC13     | 1x13mm Boral Std. Core plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system           | 8.6  | 38 | 45 | 90G14, 100P14 |
|          | COC16F    | 1x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 13.0 | 42 | 46 | 90G14, 100P14 |
|          | COC26F    | 2x13mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 21.0 | 45 | 47 | 90G14, 100P14 |
|          | COC32F    | 2x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 26.0 | 46 | 48 | 90G14, 100P14 |
|          |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |
| ll<br>Jh |           |                                                                                                     |      |    |    |               |
| ,,,      |           |                                                                                                     |      |    |    |               |
| d        |           |                                                                                                     |      |    |    |               |
|          |           |                                                                                                     |      |    |    |               |

• These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             | S             | Selector+ F    | PLASTERBOARD SY                  | YSTEMS          |
|------------------|------------|-------------|---------------|----------------|----------------------------------|-----------------|
|                  |            |             | Approx<br>Pbd | Nil Insulation | Acoustic Ratings With Insulation |                 |
| Layout           | System Ref | Description | Mass (kg/m²)  | $D_{n,c,w}$    | $D_{n,c,w}$                      | Insulation Type |

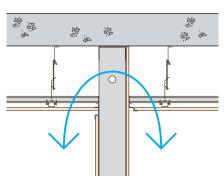
### » Over Partition, Room-to-Room Via Ceiling



Ceiling discontinuous over partition wall

System COD10U illustrated

#### NOTES:


- Acoustic ratings based on nom 650mm plenum depth
- Junction of wall to suspended ceiling acoustically sealed
- Insulation to extend min 1200mm from each side of the wall
- To ensure that the acoustic performance of the wall is not degraded significantly by the flanking through the ceiling path, the D<sub>n,c,w</sub> of the ceiling should be min 3dB higher than the Rw of the wall
- Shadowline stopping angle (P50) at head of wall to be acoustically sealed
- Penetrations such as return air grilles and recessed light fittings may degrade the stated acoustic performance.

|         | CODT10U | 1x10mm Boral lay-in infill ceiling panel in Rondo DUO two-way exposed suspended ceiling grid system | 7.2  | 37 | 42 | 90G14, 100P14 |
|---------|---------|-----------------------------------------------------------------------------------------------------|------|----|----|---------------|
|         | COD10U  | 1x10mm Boral Unispan plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system             | 7.2  | 40 | 46 | 90G14, 100P14 |
|         | COD13   | 1x13mm Boral Std. Core plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system           | 8.6  | 41 | 47 | 90G14, 100P14 |
|         | COD16F  | 1x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 13.0 | 43 | 48 | 90G14, 100P14 |
|         | COD26F  | 2x13mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 21.0 | 47 | 50 | 90G14, 100P14 |
|         | COD32F  | 2x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 26.0 | 49 | 51 | 90G14, 100P14 |
|         |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |
| ll<br>h |         |                                                                                                     |      |    |    |               |
| )       |         |                                                                                                     |      |    |    |               |
| ,<br>t  |         |                                                                                                     |      |    |    |               |
|         |         |                                                                                                     |      |    |    |               |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |      |         | S           | Selector+ F    | PLASTERBOARD S     | YSTEMS          |
|------------------|------------|------|---------|-------------|----------------|--------------------|-----------------|
|                  |            |      |         | Approx      |                | Acoustic Ratings   |                 |
|                  |            |      |         | Pbd<br>Mass | Nil Insulation | With Insulation    |                 |
| Layout           | System Ref | Desc | ription | (kg/m²)     | $D_{n.c.w}$    | $D_{\text{n.c.w}}$ | Insulation Type |

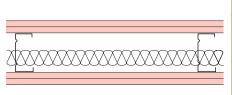
### » Over Partition, Room-to-Room Via Ceiling



Plasterboard barrier in ceiling space
Ceiling discontinuous over partition wall
System COB10U illustrated

#### NOTES:

- Acoustic ratings based on nom 650mm plenum depth
- Junction of wall to suspended ceiling acoustically sealed
- To ensure that the acoustic performance of the wall is not degraded significantly by the flanking through the ceiling path, the D<sub>n,c,w</sub> of the ceiling should be min 3dB higher than the Rw of the wall
- Other ceiling space barriers may include bariumloaded vinyl material eg Soundguard Wavebar.


| _         |         | via ocining                                                                                         |      |    |    |    |
|-----------|---------|-----------------------------------------------------------------------------------------------------|------|----|----|----|
|           | COBT10U | 1x10mm Boral lay-in infill ceiling panel in Rondo DUO two-way exposed suspended ceiling grid system | 7.2  | 50 | NA | NA |
|           | COB10U  | 1x10mm Boral Unispan plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system             | 7.2  | 50 | NA | NA |
|           | COB13   | 1x13mm Boral Std. Core plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system           | 8.6  | 50 | NA | NA |
|           | COB16F  | 1x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 13.0 | 50 | NA | NA |
|           | COB26F  | 2x13mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 21.0 | 50 | NA | NA |
|           | COB32F  | 2x16mm Boral Firestop plasterboard fixed to Rondo KEY-LOCK concealed ceiling grid system            | 26.0 | 50 | NA | NA |
| ıll<br>Jh |         |                                                                                                     |      |    |    |    |

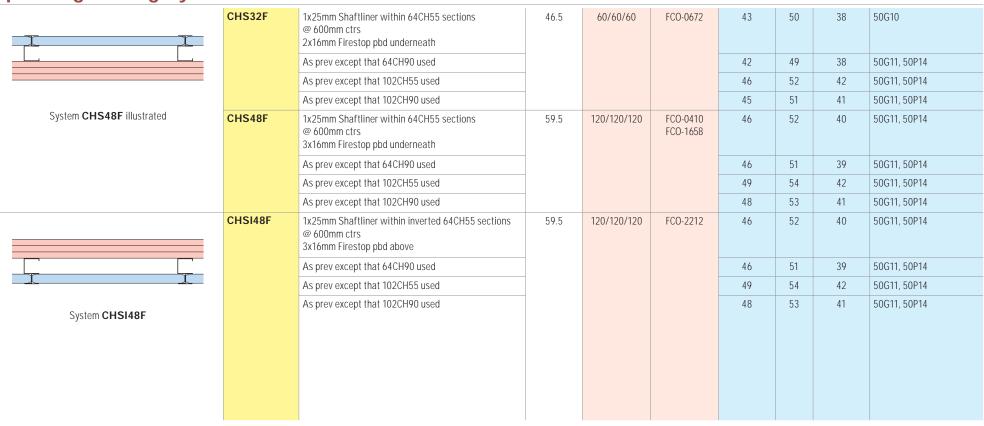
| B   System Index |            |             |             |          | Select   | or+ P       | LASTE                            | RBOARD S                   | SYSTEMS         |
|------------------|------------|-------------|-------------|----------|----------|-------------|----------------------------------|----------------------------|-----------------|
|                  |            |             | Approx      | Fire Res | sistance |             | А                                | coustic Ra                 | tings           |
|                  |            |             | Pbd<br>Mass |          |          | Nil Insul   | With I                           | Insulation                 |                 |
| Layout           | System Ref | Description | (kg/m²)     | FRL      | Basis    | $R_{\rm W}$ | $R_{\scriptscriptstyle 	ext{W}}$ | $R_{\rm W}$ + $C_{\rm tr}$ | Insulation Type |

# **Spanning Ceiling Systems - D-Span**<sup>™</sup>



# **Spanning Ceiling Systems - C Sections**




System CSP3232F illustrated

| CSP1616F   | 1x16mm Firestop pbd above<br>150CS75 @ 600 centres<br>1x16mm Firestop pbd below                             | 26.0 | 60/60/60<br>from above<br>only    | FCO-1160 | 39 | 44 | 36 | 90G11, 90P14 |
|------------|-------------------------------------------------------------------------------------------------------------|------|-----------------------------------|----------|----|----|----|--------------|
| CSP2613F   | 2x13mm Firestop pbd above<br>150CS75 @ 600 centres<br>1x13mm Firestop pbd below                             | 31.5 | 90/90/90<br>from above<br>only    | FCO-1161 | 42 | 50 | 38 | 90G11, 90P14 |
| CSP3216F10 | 2x16mm Firestop pbd above<br>150CS75 @ 600 centres<br>1x16mm Firestop pbd below<br>plus 1x10mm Std Core pbd | 45.8 | 120/120/120<br>from above<br>only | FCO-1162 | 46 | 51 | 44 | 90G11, 90P14 |
| CSP5016F   | 2 x Shaft liner above<br>150CS75 @ 600 centres<br>1x16mm Firestop pbd below                                 | 54.0 | 180/180/180<br>from above<br>only | FCO-1213 | 47 | 52 | 45 | 90G11, 90P14 |
| CSP3232F   | 2x16mm Firestop pbd above<br>150CS75 @ 600 centres<br>2x16mm Firestop pbd below                             | 52.0 | 60/60/60                          | FCO-0411 | 48 | 51 | 43 | 90G11, 90P14 |
| CSP3248F   | 2x16mm Firestop pbd above<br>150CS75 @ 600 centres<br>3x16mm Firestop pbd below                             | 65.0 | 120/120/120                       | FCO-0411 | 47 | 52 | 45 | 90G11, 90P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Spans refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            | Selector+ PLASTERBOARD SYSTEMS |             |             |          |          |           | SYSTEMS |                            |                 |  |
|------------------|------------|--------------------------------|-------------|-------------|----------|----------|-----------|---------|----------------------------|-----------------|--|
|                  |            |                                |             | Approx      | Fire Res | sistance |           | А       | coustic Ra                 | tings           |  |
|                  |            |                                |             | Pbd<br>Mass |          |          | Nil Insul | With I  | nsulation                  |                 |  |
| Layout           | System Ref |                                | Description | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C $_{\rm tr}$ | Insulation Type |  |

### **Spanning Ceiling Systems - Horizontal Shaft Wall**



<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • For Limiting Spans refer Section C • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

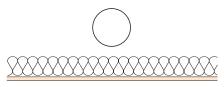
| B   System Index |            | Selector+ PLASTERBOARD SYSTEMS |             |          |          |           | SYSTEMS |                            |                 |
|------------------|------------|--------------------------------|-------------|----------|----------|-----------|---------|----------------------------|-----------------|
|                  |            |                                | Approx      | Fire Res | sistance |           | А       | coustic Ra                 | tings           |
|                  |            |                                | Pbd<br>Mass |          |          | Nil Insul | With I  | nsulation                  |                 |
| Layout           | System Ref | Description                    | (kg/m²)     | FRL      | Basis    | $R_{W}$   | $R_{W}$ | $R_{\rm W}$ +C $_{\rm tr}$ | Insulation Type |

# **Special Ceiling Systems**



<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1

This page left blank intentionally.


| B   System Index |            |             |             | Sele    | ctor+                      | PLASTE   | RBOARD S                   | SYSTEMS         |
|------------------|------------|-------------|-------------|---------|----------------------------|----------|----------------------------|-----------------|
|                  |            |             | Approx      |         |                            | Acoustic | Ratings                    |                 |
|                  |            |             | Pbd<br>Mass | Nil     | Insul                      | With In  | sulation                   |                 |
| Layout           | System Ref | Description | (kg/m²)     | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $R_{W}$  | $R_{\rm w}$ + $C_{\rm tr}$ | Insulation Type |

# **Soil and Waste Pipe Systems**

Ceiling or Wall Partition of either;

- Concrete
- Masonry
- Drywall





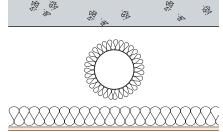
System WP13A illustrated

#### NOTES:

- Cavity insulation to extend min 1200mm each side of pipe
- Penetrations such as down lights and return air grilles will downgrade the stated acoustic performance (refer Section A4 for estimated acoustic ratings)

| 3(01113 |                                                                                          |      |    |    |    |    |                |
|---------|------------------------------------------------------------------------------------------|------|----|----|----|----|----------------|
| WP10    | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 1x10mm Std Core pbd  | 6.8  | 28 | 25 | 30 | 27 | 150G14, 150P14 |
| WP10A   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 1x10mm Soundstop pbd | 8.2  | 28 | 26 | 30 | 28 | 50G14, 50P14   |
| WP13    | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 1x13mm Std Core pbd  | 8.6  | 28 | 26 | 30 | 28 | 75G14, 75P14   |
| WP13A   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 1x13mm Soundstop pbd | 11.2 | 30 | 28 | 32 | 30 | 50G14, 50P14   |
| WP20    | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 2x10mm Std Core pbd  | 13.6 | 31 | 28 | 33 | 30 | 50G14, 50P14   |
| WP20A   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 2x10mm Soundstop pbd | 16.4 | 32 | 29 | 35 | 32 | 75G14, 75P14   |
| WP26    | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 2x13mm Std Core pbd  | 17.2 | 32 | 29 | 35 | 32 | 75G14, 75P14   |
| WP26A   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 2x13mm Soundstop pbd | 22.4 | 33 | 30 | 36 | 33 | 75G14, 75P14   |
| WP39F   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 3x13mm Firestop pbd  | 31.5 | 37 | 34 | 40 | 37 | 75G14, 75P14   |
| WP48F   | 100mm dia unlagged soil/waste pipe adjacent to concrete wall/soffit 3x16mm Firestop pbd  | 39.0 | 38 | 35 | 41 | 38 | 75G14, 75P14   |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)


| B   System Index |            |             |          |           | Sele    | ctor+                      | PLASTE   | RBOARD S         | SYSTEMS         |
|------------------|------------|-------------|----------|-----------|---------|----------------------------|----------|------------------|-----------------|
|                  |            |             | Арр      | prox      |         |                            | Acoustic | Ratings          |                 |
|                  |            |             | Pt<br>Ma | bd<br>ass | Nil I   | nsul                       | With In  | sulation         |                 |
| Layout           | System Ref | Description | (kg/     |           | $R_{W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $R_{W}$  | $R_{\rm W}$ +Ctr | Insulation Type |

**B4** 

### » Soil and Waste Pipe Systems - Lagged

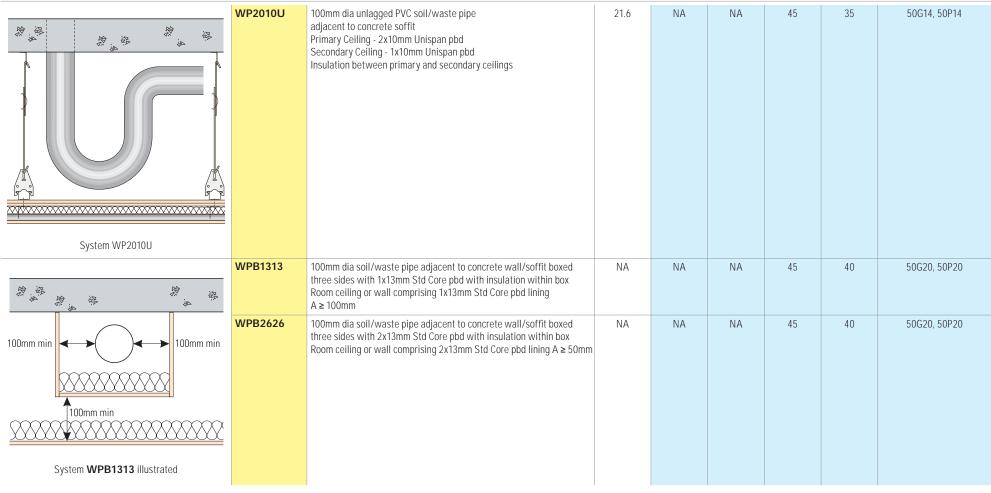
Ceiling or Wall Partition of either;

- Concrete
- Masonry
- Drywall



System WPL13A illustrated

#### NOTES:


- Cavity insulation to extend minimum 1200mm each side of pipe
- PVC pipe lagged & clad with Insulation Solutions<sup>™</sup> QuietPipe<sup>™</sup> system or equivalent
- Penetrations such as down lights and return air grilles will downgrade the stated acoustic performance (refer Section A4 for estimated acoustic ratings)

| 990011 | 13 Laggod                                                                                        |      |    |    |    |    |              |
|--------|--------------------------------------------------------------------------------------------------|------|----|----|----|----|--------------|
| WPL10  | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>1x10mm Std Core pbd  | 6.8  | 40 | 34 | 42 | 38 | 75G14, 75P14 |
| WPL10A | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>1x10mm Soundstop pbd | 8.2  | 40 | 35 | 42 | 38 | 75G14, 75P14 |
| WPL13  | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>1x13mm Std Core pbd  | 8.6  | 40 | 35 | 42 | 38 | 75G14, 75P14 |
| WPL13A | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>1x13mm Soundstop pbd | 11.2 | 41 | 36 | 43 | 40 | 75G14, 75P14 |
| WPL20  | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>2x10mm Std Core pbd  | 13.6 | 42 | 37 | 45 | 40 | 75G14, 75P14 |
| WPL20A | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>2x10mm Soundstop pbd | 16.4 | 44 | 39 | 47 | 42 | 75G14, 75P14 |
| WPL26  | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>2x13mm Std Core pbd  | 17.2 | 44 | 39 | 47 | 42 | 75G14, 75P14 |
| WPL26A | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>2x13mm Soundstop pbd | 22.4 | 45 | 40 | 48 | 43 | 75G14, 75P14 |
| WPL32F | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>2x16mm Firestop pbd  | 26.0 | 45 | 40 | 48 | 43 | 75G14, 75P14 |
| WPL39F | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>3x13mm Firestop pbd  | 31.5 | 47 | 42 | 49 | 44 | 75G14, 75P14 |
| WPL48F | 100mm dia lagged PVC soil/waste pipe<br>adjacent to concrete wall/soffit<br>3x16mm Firestop pbd  | 39.0 | 48 | 43 | 51 | 46 | 75G14, 75P14 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

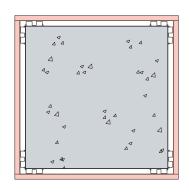
| B   System Index |            |  |             |                 | Sele    | ctor+                        | PLASTE  | RBOARD S                     | SYSTEMS       |     |
|------------------|------------|--|-------------|-----------------|---------|------------------------------|---------|------------------------------|---------------|-----|
|                  |            |  |             | Approx<br>Pbd   | Nil I   | nsul                         |         | Ratings                      |               |     |
| Layout           | System Ref |  | Description | Mass<br>(kg/m²) | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | $R_{W}$ | $R_{\rm W}$ +C <sub>tr</sub> | Insulation Ty | ype |

### » Soil and Waste Pipe Systems



<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            |             |             | Sele        | ctor+                      | PLASTE   | RBOARD S         | SYSTEMS         |
|------------------|------------|-------------|-------------|-------------|----------------------------|----------|------------------|-----------------|
|                  |            |             | Approx      |             |                            | Acoustic | Ratings          |                 |
|                  |            |             | Pbd<br>Mass | Nil I       | nsul                       | With In  | sulation         |                 |
| Layout           | System Ref | Description | (kg/m²)     | $R_{\rm W}$ | $R_{\rm W}$ + $C_{\rm tr}$ | $R_{W}$  | $R_{\rm W}$ +Ctr | Insulation Type |


# » Soil and Waste Pipe Systems

|                                           | SWP1020<br>(to habitable<br>room) | 100mm dia uninsulated soil/waste pipe adjacent to concrete wall/soffit Pipe separated from habitable room with steel stud wall comprising:                                                                                                                                                                                                | NA | NA | NA | 45 | 40 | 50G14, 50P14 |
|-------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|--------------|
| SWP1020 WP13A  Habitable room  Bath room  | WP13A<br>(bathroom<br>ceiling)    | <ul> <li>1x10mm Std Core pbd lining on habitable side</li> <li>64mm steel stud</li> <li>insulation within cavity wall to extend down to ceiling line</li> <li>1x10mm Wet Area Board on bathroom side + additional layer 10mm Std Core pbd on partition wall within pipe cavity</li> <li>Insulation within pipe cavity</li> </ul>          | NA | 30 | 28 | 32 | 30 | 50G14, 50P14 |
| System SWP1020/WP13A                      |                                   |                                                                                                                                                                                                                                                                                                                                           |    |    |    |    |    |              |
|                                           | TWP1020<br>(to habitable<br>room) | Pipe separated from habitable room with timber stud wall comprising:                                                                                                                                                                                                                                                                      | NA | NA | NA | 45 | 40 | 50G14, 50P14 |
| TWP1020  WP13A  Habitable room  Bath room | WP13A<br>(bathroom<br>ceiling)    | <ul> <li>1x10mm Std Core pbd lining on habitable side</li> <li>70mm or 90mm timber stud</li> <li>Insulation within cavity wall to extend down to ceiling line</li> <li>1x10mm Wet Area Board on bathroom side + additional layer 10mm Std Core pbd on partition wall within pipe cavity</li> <li>Insulation within pipe cavity</li> </ul> | NA | 30 | 28 | 32 | 30 | 50G14, 50P14 |
| System TWP1020/WP13A                      |                                   |                                                                                                                                                                                                                                                                                                                                           |    |    |    |    |    |              |

• These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1 • Acoustic ratings by GHA, Sheet No 104 (refer Section A4)

| B   System Index |            | Selector+ PLASTERB | OARD SYSTE | MS       |
|------------------|------------|--------------------|------------|----------|
|                  |            |                    | Fire Res   | sistance |
| Layout           | System Ref | Description        | FRL        | Basis    |

### **Protection - Concrete Columns**



System PCC13F illustrated

| PCC13F | 1x13mm Firestop pbd applied direct or to furring fixed to concrete column | 30/-/-<br>increase | FCO-2074 |
|--------|---------------------------------------------------------------------------|--------------------|----------|
| PCC25F | 1x25mm Shaftliner applied direct or to furring fixed to concrete column   | 120/-/- increase   | FCO-2074 |
|        |                                                                           |                    |          |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1

# B | System Index | Selector+ PLASTERBOARD SYSTEMS

### **Protection - Steel Columns**

| 1 Totalion - Sta                                                                                                                   |                                  |                                                                                                                                            |                                    |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Description                                                                                                                        | Layout                           | Description                                                                                                                                | Layout                             |
| Detail G  Encasement channel or clips and angle to form gap around steel column, line with Firestop pbd as required for stated FRL |                                  | Detail I  Rondo 32mm flange x 0.75mm BMT track to form gap around circular steel column, line with Firestop pbd as required for stated FRL |                                    |
|                                                                                                                                    | System <b>PSC25F</b> illustrated | _                                                                                                                                          | System <b>PSC25F</b> illustrated   |
| Detail H Rondo PN 142 track to form gap around steel SHS/RHS column, line with Firestop pbd as required for stated FRL             |                                  | Detail J Shaftliner, corner angles and wire ligatures hard against steel column to achieve required FRL                                    |                                    |
|                                                                                                                                    | System <b>PSC25F</b> illustrated |                                                                                                                                            | System <b>PSC25F10</b> illustrated |

| B   System Index |            | Selector+ PLAST | RBOARD SYSTE | EMS      |
|------------------|------------|-----------------|--------------|----------|
|                  |            |                 | Fire Re      | sistance |
| Layout           | System Ref | Description     | FRL          | Basis    |

### » Protection - Steel Columns

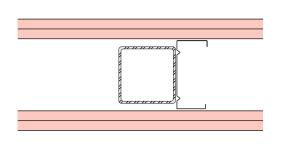
Refer details on page B4.6

| PSC13F   | To detail G<br>With 1x13mm Firestop pbd<br>to periphery and spaced from I section steel column                                            | 30/-/-              | FCO-1972                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|
|          | To detail H With 1x13mm Firestop pbd to periphery and spaced from square steel column                                                     | 30/-/-              | FCO-1972                                        |
|          | To detail I With 1x13mm Firestop pbd to periphery and spaced from circular steel column                                                   | 30/-/-              | FCO-1972                                        |
| PSC25F   | To detail G With 2x13mm Firestop pbd or 1x25mm Shaftliner to periphery and spaced from I section steel column                             | 60/-/-              | FCO-1972                                        |
|          | To detail H With 2x13mm Firestop pbd or 1x25mm Shaftliner to periphery and spaced from square steel column                                | 60/-/-              | FCO-1972                                        |
|          | To detail I With 2x13mm Firestop pbd or 1x25mm Shaftliner to periphery and spaced from circular steel column                              | 60/-/-              | FCO-1972                                        |
| PSC25F10 | To detail J<br>1x25mm Shaftliner + 1x10mm Std Core pbd<br>to periphery and applied directly to I section steel column of ESA/M < 9.45m²/t | 120/-/-<br>increase | FCO-1972<br>BHP980804<br>BHP980216<br>BHP940810 |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1

| B   System Index | Selector+ PLASTERBOARD SYSTEMS |             |                 |       |
|------------------|--------------------------------|-------------|-----------------|-------|
|                  |                                |             | Fire Resistance |       |
| Layout           | System Ref                     | Description | FRL             | Basis |

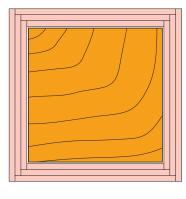
### » Protection - Steel Columns


Refer details on page B4.6

| PSC32F | To detail G With 2x16mm Firestop pbd to periphery and spaced from I section steel column                                       | 90/-/-              | FCO-1972                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|
|        | To detail H With 2x16mm Firestop pbd to periphery and spaced from square steel column                                          | 90/-/-              | FCO-1972                                        |
|        | To detail I With 2x16mm Firestop pbd to periphery and spaced from circular steel column                                        | 90/-/-              | FCO-1972                                        |
| PSC38F | To detail G With 3x13mm Firestop pbd or 1x13mm + 1x25mm Shaftliner to periphery and spaced from I section steel column         | 120/-/-             | FCO-1972                                        |
|        | To detail H With 3x13mm Firestop pbd or 1x13mm + 1x25mm Shaftliner to periphery and spaced from square steel column            | 120/-/-             | FCO-1972                                        |
|        | To detail I With 3x13mm Firestop pbd or 1x13mm + 1x25mm Shaftliner to periphery and spaced from circular steel column          | 120/-/-             | FCO-1972                                        |
| PSC50F | To detail J<br>2x25mm Shaftliner<br>to periphery and applied directly to I section steel column of ESA/M < 45m <sup>2</sup> /t | 120/-/-<br>increase | FCO-1972<br>BHP980804<br>BHP980216<br>BHP940810 |
| PSC75F | To detail J 3x25mm Shaftliner to periphery and applied directly to I section steel column of ESA/M < 45m2/t                    | 180/-/-<br>increase | BHP950915                                       |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1

| B   System Index | Selector+ PLASTERBOARD SYSTEMS |             |          | MS       |
|------------------|--------------------------------|-------------|----------|----------|
|                  |                                |             | Fire Res | sistance |
| Layout           | System Ref                     | Description | FRL      | Basis    |


# » Protection - Steel Columns



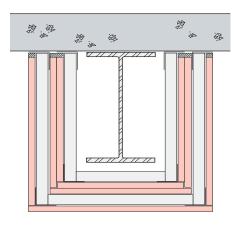
System PSC2626F illustrated

| PSC1313F | 1x13mm Firestop pbd<br>to each side of wall within which steel column is located | 30/-/-  | FCO-1972 |
|----------|----------------------------------------------------------------------------------|---------|----------|
| PSC2626F | 2x13mm Firestop pbd<br>to each side of wall within which steel column is located | 60/-/-  | FCO-1972 |
| PSC3232F | 2x16mm Firestop pbd<br>to each side of wall within which steel column is located | 90/-/-  | FCO-1972 |
| PSC3939F | 3x13mm Firestop pbd<br>to each side of wall within which steel column is located | 120/-/- | FCO-1972 |

# **Protection - Timber Columns**



System PTC39 illustrated

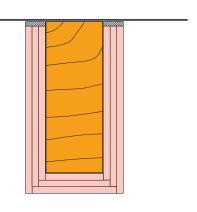

| PTC13F | 1x13mm Firestop pbd directly applied to timber column           | 30/-/-  | 91/183           |
|--------|-----------------------------------------------------------------|---------|------------------|
| PTC26F | 2x13mm Firestop pbd furred or directly applied to timber column | 60/-/-  | 91/169<br>91/183 |
| PTC39F | 3x13mm Firestop pbd directly applied to timber column           | 90/-/-  | 91/183           |
| PTC48F | 3x16mm Firestop pbd directly applied to timber column           | 120/-/- | 91/183           |

<sup>•</sup> These tables should be read in conjunction with Section A • For explanation of System Reference notation refer Section B1

| B   System Index | Selector+ PLASTERBOARD SYSTEMS |             |          | MS       |
|------------------|--------------------------------|-------------|----------|----------|
|                  |                                |             | Fire Res | sistance |
| Layout           | System Ref                     | Description | FRL      | Basis    |

**B4** 

# **Protection - Steel Beams**

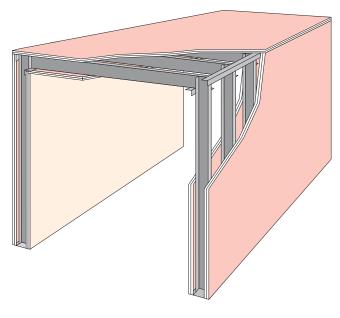



System PSBC48F illustrated

| PSB16F   | 1x16mm Firestop pbd over Shaftliner packers to sides and bottom of steel beam of ESA/m < 30m²/t                                                | 30/-/-  | BHP930630 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| PSB38F   | 3x13mm Firestop pbd<br>or 1x25mm Shaftliner + 1x13mm Firestop pbd spaced from sides and bottom of steel beam                                   | 120/-/- | FCO-1972  |
| PSB50F   | 2x25mm Shaftliner cap to SHS<br>RHS steel beam supporting horizontal Shaft Wall                                                                | 120/-/- | FCO-0410  |
| PSB3232F | PFC Steel beam within wall clad both sides in 2x16mm Firestop pbd                                                                              | 120/-/- | FSV 0115  |
| PSBC48F  | Furring 2x16mm Firestop pbd Furring 1x16mm Firestop pbd spaced from sides and bottom of steel beam supporting concrete floor                   | 120/-/- | FCO-1972  |
| PSBT48F  | Ceiling bulkhead or furring 2x16mm Firestop pbd Furring 1x16mm Firestop pbd spaced from sides and bottom of steel beam supporting timber floor | 120/-/- | FCO-1972  |

| B   System Index | Selector+ PLASTERBOARD SYSTEMS |             |          | MS       |
|------------------|--------------------------------|-------------|----------|----------|
|                  |                                |             | Fire Res | sistance |
| Layout           | System Ref                     | Description | FRL      | Basis    |

# **Protection - Timber Beams**




System PTB39F illustrated

| PTB13F | 1x13mm Firestop pbd directly applied to timber beam | 30/-/-  | 93/402 |
|--------|-----------------------------------------------------|---------|--------|
| PTB26F | 2x13mm Firestop pbd directly applied to timber beam | 60/-/-  | 93/402 |
| PTB39F | 3x13mm Firestop pbd directly applied to timber beam | 90/-/-  | 93/402 |
| PTB48F | 3x16mm Firestop pbd directly applied to timber beam | 120/-/- | 93/402 |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |
|        |                                                     |         |        |

| B   System Index | Selector+ PLASTERBOARD SYSTEMS |             |          | MS       |
|------------------|--------------------------------|-------------|----------|----------|
|                  |                                |             | Fire Res | sistance |
| Layout           | System Ref                     | Description | FRL      | Basis    |

# **Fire Tunnels**



System FTB32F32F illustrated

| FTB32F32F   | Welded steel frames ex 150mm Rondo studs, track and corner angles<br>2x16mm Firestop pbd over ceiling<br>2x16mm Firestop pbd under ceiling<br>1x16mm Firestop pbd to both sides of wall frame                             | -/60/60<br>from both sides   | FCO-0645R<br>FCO-0411R |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|
| FTO16F16F   | Welded steel frames ex 150mm Rondo studs, track and corner angles<br>1x16mm Firestop pbd over ceiling<br>1x16mm Firestop pbd under ceiling<br>1x16mm Firestop pbd to both sides of wall frame                             | -/60/60<br>from outside      | FCO-1160               |
| FTO26F13F   | Welded steel frames ex 150mm Rondo studs, track and corner angles<br>2x13mm Firestop pbd over ceiling and outside walls<br>1x13mm Firestop pbd under and to inner sides of wall frame                                     | -/90/90<br>from outside      | FCO-1161               |
| FTO32F16F10 | Welded steel frames ex 150mm Rondo studs, track and corner angles<br>2x16mm Firestop pbd over ceiling and outside walls<br>1x16mm Firestop pbd plus<br>1x10mm Std Core pbd under ceiling and to inner sides of wall frame | -/120/120<br>from outside    | FCO-1162               |
| FTB32F48F   | Welded steel frames ex 150mm Rondo studs, track and corner angles<br>2x16mm Firestop pbd over ceiling<br>3x16mm Firestop pbd under ceiling<br>2x16mm Firestop pbd to both sides of wall frame                             | -/120/120<br>from both sides | FCO-0645R<br>FCO-0411R |
| FTO50F16F   | Structural support steel frames 2x25mm Firestop pbd over ceiling 1x16mm Firestop pbd under ceiling 2x16 Firestop to both sides of NLB wall frame                                                                          | -/180/180<br>from outside    | FCO-1213               |

# C | Design Tables

| C1   Frameless Wall Systems        |
|------------------------------------|
| C2   Steel Stud Height Tables      |
| C3   Timber Stud Charfactor Tables |
| C4   Ceiling Span Tables           |
|                                    |

C5 | Shelf Load Tables









# **C** | Contents

# C1 | Frameless Wall Systems

Static pressure testing of Ventshaft™ VS48F and resistance to impact testing to BCA C1.8 was carried out at Boral Plasterboard's NATA registered structures laboratory.

Consulting Engineers Taylor Thomson Whitting observed the static testing and maximum Ventshaft  $^{\text{\tiny{M}}}$  VS48F panel sizes were subsequently computed as listed below.

Impact resistance testing on 3000 x 3000mm Ventshaft™ VS48F panel show the panel to meet BCA criteria for bag drop heights of 100mm and 150mm.

#### Max Non Load Bearing Vent Shaft VS48F Panel Sizes

| Maximum Wal | Il Pressure |            |             |
|-------------|-------------|------------|-------------|
| 0.25        | kPa         | 0.35       | kPa         |
| Width (mm)  | Height (mm) | Width (mm) | Height (mm) |
| 1200        | 6000        | 1200       | 6000        |
| 1800        | 4800        | 1800       | 2800        |
| 2400        | 3300        | 2400       | 2100        |
| 3000        | 2700        | 3000       | 1700        |

#### Notes:

- All four edges of the panel must be supported
- Plasterboard layers 1 and 3 to be aligned along long direction of panel, layer 2 across
- Deflection limit is span/240 to a maximum of 30mm
- Wall heights tabled are not for axial loads but include self weight and lateral pressures stated
- · Shelf loading is not permitted
  - The maximum panel sizes are based on testing performed using Boral Firestop® Plasterboard manufactured by Boral Australian Gypsum Ltd
- Construction to be as detailed in the relevant report
- Deflection heads to be designed and used as required
- Panel size of up to 3000mm x 3000mm have been fire tested at pressures of 50Pa however the panel size will in most cases be limited by cold structural considerations.

This page left blank intentionally.

# C2 | Steel Stud Height Tables

# Non Load Bearing Steel C Studs

#### **General Notes to Tables**

#### Symbols:

- s = permissible strength limits
- d = deflection limits
- h = head track capacity limits
- f = fire height limits
- sl = slenderness ratio limits
- Where 2d appears, deflection limits the design and 2 rows of equally spaced noggings are required. Similarly 2s means strength controls the design and 2 rows of equally spaced noggings are required
- At least one mid height row of nogging is required on all walls 3600mm and higher, additional rows of nogging may be included in the wall frame to maintain stability during construction
- Minimum yield stress of steel sections to be 270MPa
- Deflection limit is height/240 to a maximum of 30mm
- Maximum slenderness ratio I/r = 300
- Wall heights tabled are for single piece Rondo Australian manufactured lipped C studs at maximum centres shown
- Wall heights tabled are not for axial loads but include self weight and lateral pressures stated
- Shelf loading is not permitted for the tabulated maximum wall heights. Refer Boral Plasterboard for maximum heights with shelf loadings
- Tabulated heights are for internal walls only. Refer to Boral Plasterboard if walls are subject to external loadings
- For fire service, 50Pa pressure assumed. Where pressures are greater than 50Pa and fire loadings are likely to be coincident, Boral Plasterboard should be consulted
- All plasterboard is to be manufactured by Boral Plasterboard in Australia
- Walls are to be constructed with 13mm or 16mm Boral FireSTOP™, or, Wet Area Firestop™ or 10mm or 13mm Boral Standard Core plasterboard as required by fire rating and detailing
- Walls are to be constructed to Boral Plasterboard standard C Stud fire rated or screw-fixed non fire rated wall details as appropriate but with 300mm maximum screw centres.

#### **Systems Lined Both Sides**

 Wall heights tabled are calculated using standard head track reaction capacity as follows:

#### Standard Head Track Reaction Capacity (Kn)

|                |        |        | Plaste | rboard |        |        |
|----------------|--------|--------|--------|--------|--------|--------|
| Track BMT (mm) | 1 x 10 | 1 x 13 | 1 x 16 | 2 x 10 | 2 x 13 | 2 x 16 |
| 0.55           | 0.40   | 0.60   | 0.90   | 0.40   | 0.60   | 0.90   |
| 0.75           | 0.40   | 0.60   | 0.90   | 0.40   | 0.60   | 0.90   |
| 1.15           | 0.40   | 0.60   | 0.90   | 0.40   | 0.60   | 0.90   |

#### Notes:

- 10mm max clearance at top of stud, board
- Wall head to Rondo detail TDS/03-103 dated 20th May 1998.
- The tabulated heights <u>have not</u> been checked for a deflection head track installation and the appropriate configuration must be selected for the allowable head track reaction tabulated below
- Where greater deflection capacity is required, 20mm deflection heads may be used with allowable head track reaction capacities as follows:

#### Deflection Head Track Reaction Capacity (Kn)

|                |        |        | Plaste | rboard |        |        |
|----------------|--------|--------|--------|--------|--------|--------|
| Track BMT (mm) | 1 x 10 | 1 x 13 | 1 x 16 | 2 x 10 | 2 x 13 | 2 x 16 |
| 0.75           | 0.40   | 0.44   | 0.44   | 0.40   | 0.44   | 0.44   |
| 1.15           | 0.40   | 0.60   | 0.90   | 0.40   | 1.03   | 1.03   |

#### Notes:

- 20mm max clearance at top of stud, board
- Wall head to Rondo detail TDS/03-107 dated 20th May 1998
- UNO stud BMT = track BMT.
- Alternative head track installations must be checked in accordance with Rondo head track capacity tables
- The allowable head track reactions noted above, rely on the plasterboard for restraint and must be installed strictly in accordance with Rondo details

# » Non Load Bearing Steel C Studs

- Alternatively select connections from Rondo tables TDS/03-101 for standard track and TDS/03-105 for deflection head
- Plasterboard to be fixed to both sides of the wall frame to the full nominal height of the wall exclusive of any allowance for soffit deflection.
- The nogging track requirements may be omitted if the linings stop within 100mm from the soffit
- Detailed seismic analysis requires site/building specific parameters and has not been performed, however, tabulated wall heights comply with AS 1170.4 clause 5.2.1, category 3, provided that:
  - the walls have been designed for 0.25kPa pressure (minimum)
  - the walls including attachments have a total mass (Gc) not exceeding 100kg/m²

| - | acceleration a | ≤ | 0.08 |
|---|----------------|---|------|
| - | Site Factor S  | ≤ | 2.0  |
| - | ах             | ≤ | 2.0  |
| - | ac             | ≤ | 1.0  |
| - | Cc1            | ≤ | 0.9  |
| _ | 1              | = | 1.0  |

### **Systems Lined One Side**

#### Wall Head/Base Design

| Wall Construction        | Clearance                                | Reaction Capacity                                  |
|--------------------------|------------------------------------------|----------------------------------------------------|
| Twin stud,<br>Head track | 10mm max clearance at top of stud, board | Reaction capacity,<br>refer to Rondo<br>TDS/03-102 |
|                          | 20mm max clearance at top of stud, board | Reaction capacity,<br>refer to Rondo<br>TDS/03-106 |
| Twin stud,<br>Base track | (Studs hard down into track)             | Reaction capacity,<br>refer to Rondo<br>TDS/03-108 |
| Staggered Stud           | 30mm max clearance at top of stud, board | Reaction capacity<br>at head and base:<br>0.47kN   |

#### Notes for staggered stud only:

- Top Hat track to Boral Plasterboard detail 209710-A
- min 13mm plasterboard.

For other reaction capacities refer Rondo or Boral Plasterboard.

Nogged wall frames with board to one side only ie, twin stud walls require one row of noggings/nogging track 100mm max below soffit and other nogging as below:

### Noggings

| Wall height         | Rows of Noggings                                              |
|---------------------|---------------------------------------------------------------|
| Up to 3000mm        | One row noggings/nogging track at mid height                  |
| 3000mm to 6000mm    | Two rows noggings/nogging track at third points of height     |
| 6000mm to<br>8000mm | Three rows noggings/nogging track at quarter points of height |

# C Design Tables Selector+ PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

#### **Lined Both Sides**

| Maximum Wall Pressure:                                         | 0.25kP   | a      |         |         |         |         |         | Maxim   | num St  | ud Ce     | ntres: | 600m    | m       |           | Nogg    | gings Op    | otional  |
|----------------------------------------------------------------|----------|--------|---------|---------|---------|---------|---------|---------|---------|-----------|--------|---------|---------|-----------|---------|-------------|----------|
| Lining Side 1 (no of layers x thickness in mm)                 |          | 1x10   |         | 1x13    |         | 1x      | 13      |         | 1x16    |           | 2x10   |         | 2x13    |           |         | 2x16        |          |
| Lining Side 2 (no of layers x thickness in mm)                 |          | 1x10   |         | 1x13    |         | 2x      | 13      |         | 1x16    |           | 2x10   |         | 2x13    |           |         | 2x16        |          |
|                                                                | FRL      | Nil    | Nil     | -/30/30 | -/60/60 | Nil     | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil    | Nil     | -/90/90 | -/120/120 | Nil     | -/120/120 - | /180/180 |
| Layout                                                         | Stud     |        |         |         |         |         |         |         | Wall He | eights (m | m)     |         |         |           |         |             |          |
|                                                                | 51CS50   | 2770 d | 3200 d  | 3200 d  | 3200 d  | 3200 d  | 2900 f  | 3390 d  | 3390 d  | 3390 d    | 2770 d | 3200 d  | 3200 d  | 2600 f    | 3390 d  | 3390 d      | 1900 f   |
|                                                                | 64CS50   | 3330 d | 3720 d  | 3720 d  | 3720 d  | 3720 d  | 3500 f  | 3910 d  | 3910 d  | 3910 d    | 3330 d | 3720 d  | 3720 d  | 3100 f    | 3910 d  | 3910 d      | 2300 f   |
|                                                                | 64CS75   | 3930 d | 4220 d  | 4220 d  | 4220 d  | 4220 d  | 3900 f  | 4350 d  | 4350 d  | 4350 d    | 3930 d | 4220 d  | 4220 d  | 3500 f    | 4350 d  | 4350 d      | 2700 f   |
|                                                                | 64CS115  | 4170 d | 4430 d  | 4430 d  | 4430 d  | 4430 d  | 4300 f  | 4520 d  | 4520 d  | 4520 d    | 4170 d | 4430 d  | 4430 d  | 3900 f    | 4520 d  | 4520 d      | 3000 f   |
|                                                                | 76CS55   | 3700 d | 4130 d  | 4130 d  | 4130 d  | 4130 d  | 4100 f  | 4300 d  | 4300 d  | 4300 d    | 3700 d | 4130 d  | 4130 d  | 3700 f    | 4300 d  | 4300 d      | 2700 f   |
|                                                                | 76CS75   | 4430 d | 5020 d  | 5020 d  | 5020 d  | 5020 d  | 4500 f  | 5260 d  | 5260 d  | 5200 f    | 4430 d | 5020 d  | 5020 d  | 4000 f    | 5260 d  | 5260 d      | 3000 f   |
| Doord to people side of size leaders                           | 76CS115  | 4650 d | 5220 d  | 5220 d  | 5220 d  | 5220 d  | 5000 f  | 5420 d  | 5420 d  | 5420 d    | 4650 d | 5220 d  | 5220 d  | 4500 f    | 5420 d  | 5420 d      | 3500 f   |
| Board to each side of single stud<br>System S1616F illustrated | 92CS55   | 4540 d | 4940 d  | 4940 d  | 4940 d  | 4940 d  | 4940 d  | 5180 d  | 5180 d  | 5180 d    | 4540 d | 4940 d  | 4940 d  | 4600 f    | 5180 d  | 5180 d      | 3500 f   |
|                                                                | 92CS75   | 4830 d | 5500 d  | 5500 d  | 5500 d  | 5500 d  | 5200 f  | 5710 d  | 5710 d  | 5710 d    | 4830 d | 5500 d  | 5500 d  | 4700 f    | 5710 d  | 5710 d      | 3500 f   |
|                                                                | 92CS115  | 5110 d | 5750 d  | 5750 d  | 5750 d  | 5750 d  | 5750 d  | 5930 d  | 5930 d  | 5930 d    | 5110 d | 5750 d  | 5750 d  | 5200 f    | 5930 d  | 5930 d      | 4000 f   |
|                                                                | 150CS75  | 5330 h | 6990 2d | 7190 2d | 7190 2d | 7190 2d   | 5330 h | 6990 2d | 6990 2d | 6700 f    | 7190 2d | 7190 2d     | 5000 f   |
|                                                                | 150CS115 | 5330 h | 7520 2d | 7630 2d | 7630 2d | 7630 2d   | 5330 h | 7520 2d | 7520 2d | 7520 2d   | 7630 2d | 7630 2d     | 5900 f   |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

#### C Design Tables

**Selector+** PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

### **Lined Both Sides**

| Maximum Wall Pressure                                          | : 0.25kF | a       |         |         |         |         |         | Maxin   | num S   | tud Ce    | ntres:  | 400m    | m       |           | Nog     | gings O   | ptiona   |
|----------------------------------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|-----------|---------|-----------|----------|
| Lining Side 1 (no of layers x thickness in mm)                 |          | 1x10    |         | 1x13    |         | 1x      | 13      |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |          |
| Lining Side 2 (no of layers x thickness in mm)                 |          | 1x10    |         | 1x13    |         | 2x      | 13      |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |          |
|                                                                | FRL      | Nil     | Nil     | -/30/30 | -/60/60 | Nil     | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil     | Nil     | -/90/90 | -/120/120 | Nil     | -/120/120 | -/180/18 |
| _ayout                                                         | Stud     |         |         |         |         |         |         |         | Wall He | eights (m | m)      |         |         |           |         |           |          |
|                                                                | 51CS50   | 3130 d  | 3510 d  | 3510 d  | 3500 f  | 3510 d  | 2900 f  | 3620 d  | 3620 d  | 3400 f    | 3130 d  | 3510 d  | 3510 d  | 2600 f    | 3620 d  | 3620 d    | 1900 f   |
|                                                                | 64CS50   | 3690 d  | 4020 d  | 4020 d  | 4020 d  | 4020 d  | 3500 f  | 4220 d  | 4220 d  | 4100 f    | 3690 d  | 4020 d  | 4020 d  | 3100 f    | 4220 d  | 4220 d    | 2300 f   |
|                                                                | 64CS75   | 4280 d  | 4530 d  | 4530 d  | 4530 d  | 4530 d  | 3900 f  | 4710 d  | 4710 d  | 4500 f    | 4280 d  | 4530 d  | 4530 d  | 3500 f    | 4710 d  | 4710 d    | 2700 f   |
|                                                                | 64CS115  | 4590 d  | 4810 d  | 4810 d  | 4810 d  | 4810 d  | 4300 f  | 4950 d  | 4950 d  | 4950 d    | 4590 d  | 4810 d  | 4810 d  | 3900 f    | 4950 d  | 4950 d    | 3000 f   |
|                                                                | 76CS55   | 4160 d  | 4530 d  | 4530 d  | 4530 d  | 4530 d  | 4100 f  | 4700 d  | 4700 d  | 4700 d    | 4160 d  | 4530 d  | 4530 d  | 3700 f    | 4700 d  | 4700 d    | 2700 f   |
|                                                                | 76CS75   | 4930 d  | 5450 d  | 5450 d  | 5300 f  | 5450 d  | 4500 f  | 5710 d  | 5710 d  | 5200 f    | 4930 d  | 5450 d  | 5450 d  | 4000 f    | 5710 d  | 5710 d    | 3000 f   |
|                                                                | 76CS115  | 5240 d  | 5720 d  | 5720 d  | 5720 d  | 5720 d  | 5000 f  | 5950 d  | 5950 d  | 5800 f    | 5240 d  | 5720 d  | 5720 d  | 4500 f    | 5950 d  | 5950 d    | 3500 f   |
| Board to each side of single stud<br>System S1616F illustrated | 92CS55   | 4990 d  | 5330 d  | 5330 d  | 5330 d  | 5330 d  | 5100 f  | 5560 d  | 5560 d  | 5560 d    | 4990 d  | 5330 d  | 5330 d  | 4600 f    | 5560 d  | 5560 d    | 3500 f   |
|                                                                | 92CS75   | 5460 d  | 6050 d  | 6050 d  | 6050 d  | 6050 d  | 5200 f  | 6280 d  | 6280 d  | 6100 f    | 5460 d  | 6050 d  | 6050 d  | 4700 f    | 6280 d  | 6280 d    | 3500 f   |
|                                                                | 92CS115  | 5840 d  | 6380 d  | 6380 d  | 6380 d  | 6380 d  | 5800 f  | 6580 d  | 6580 d  | 6580 d    | 5840 d  | 6380 d  | 6380 d  | 5200 f    | 6580 d  | 6580 d    | 4000 f   |
|                                                                | 150CS75  | 7340 2d | 7610 2d | 7610 2d | 7610 2d | 7610 2d | 7500 f  | 7750 2d | 7750 2d | 7750 2d   | 7340 2d | 7610 2d | 7610 2d | 6700 f    | 7750 2d | 7750 2d   | 5000 f   |
|                                                                | 150CS115 | 7970 2h | 8190 2d | 8300 2d | 8300 2d | 8300 2d   | 7970 2h | 8190 2d | 8190 2d | 7700 f    | 8300 2d | 8300 2d   | 5900 f   |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

# C Design Tables Selector+ PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

**Lined One Side** (Includes staggered stud wall systems)

| Maximum Wall Pressure:                                            | 0.25kP   | a      |        |         |         |        |         | Maxin  | num S   | tud Ce    | ntres: | 600m   | m       |           |        | Not N     | ogged     |
|-------------------------------------------------------------------|----------|--------|--------|---------|---------|--------|---------|--------|---------|-----------|--------|--------|---------|-----------|--------|-----------|-----------|
| Lining Side 1 (no of layers x thickness in mm)                    |          | 1x10   |        | 1x13    |         | 1x     | (13     |        | 1x16    |           | 2x10   |        | 2x13    |           |        | 2x16      |           |
| Lining Side 2 (no of layers x thickness in mm)                    |          | 1x10   |        | 1x13    |         | 2x     | (13     |        | 1x16    |           | 2x10   |        | 2x13    |           |        | 2x16      |           |
|                                                                   | FRL      | Nil    | Nil    | -/30/30 | -/60/60 | Nil    | -/90/90 | Nil    | -/60/60 | -/90/90   | Nil    | Nil    | -/90/90 | -/120/120 | Nil    | -/120/120 | -/180/180 |
| Layout                                                            | Stud     |        |        |         |         |        |         |        | Wall He | eights (m | m)     |        |         |           |        |           |           |
|                                                                   | 51CS50   | 2320 d | 2320 d | 2320 d  | 2320 d  | 2320 d | NA      | 2320 d | 2320 d  | 2320 d    | 2320 d | 2320 d | 2320 d  | 2320 d    | 2320 d | 2320 d    | 1900 f    |
|                                                                   | 64CS50   | 2375 s | 2375 s | 2375 s  | 2375 s  | 2375 s | NA      | 2375 s | 2375 s  | 2375 s    | 2375 s | 2375 s | 2375 s  | 2375 s    | 2375 s | 2375 s    | 2300 f    |
|                                                                   | 64CS75   | 2830 s | 2830 s | 2830 s  | 2830 s  | 2830 s | NA      | 2830 s | 2830 s  | 2830 s    | 2830 s | 2830 s | 2830 s  | 2830 s    | 2830 s | 2830 s    | 2700 f    |
|                                                                   | 64CS115  | 3510 s | 3510 s | 3510 s  | 3510 s  | 3510 s | NA      | 3510 s | 3510 s  | 3510 s    | 3510 s | 3510 s | 3510 s  | 3510 s    | 3510 s | 3510 s    | 3000 f    |
|                                                                   | 76CS55   | 2610 s | 2610 s | 2610 s  | 2610 s  | 2610 s | NA      | 2610 s | 2610 s  | 2610 s    | 2610 s | 2610 s | 2610 s  | 2610 s    | 2610 s | 2610 s    | 2610 s    |
|                                                                   | 76CS75   | 3000 s | 3000 s | 3000 s  | 3000 s  | 3000 s | NA      | 3000 s | 3000 s  | 3000 s    | 3000 s | 3000 s | 3000 s  | 3000 s    | 3000 s | 3000 s    | 3000 f    |
| Doord to single side of single stud                               | 76CS115  | 3600 s | 3600 s | 3600 s  | 3600 s  | 3600 s | NA      | 3600 s | 3600 s  | 3600 s    | 3600 s | 3600 s | 3600 s  | 3600 s    | 3600 s | 3600 s    | 3500 f    |
| Board to single side of single stud<br>System SS1616F illustrated | 92CS55   | 2740 s | 2740 s | 2740 s  | 2740 s  | 2740 s | NA      | 2740 s | 2740 s  | 2740 s    | 2740 s | 2740 s | 2740 s  | 2740 s    | 2740 s | 2740 s    | 2740 s    |
|                                                                   | 92CS75   | 3190 s | 3190 s | 3190 s  | 3190 s  | 3190 s | NA      | 3190 s | 3190 s  | 3190 s    | 3190 s | 3190 s | 3190 s  | 3190 s    | 3190 s | 3190 s    | 3190 s    |
|                                                                   | 92CS115  | 3750 s | 3750 s | 3750 s  | 3750 s  | 3750 s | NA      | 3750 s | 3750 s  | 3750 s    | 3750 s | 3750 s | 3750 s  | 3750 s    | 3750 s | 3750 s    | 3750 s    |
|                                                                   | 150CS75  | 3660 s | 3660 s | 3660 s  | 3660 s  | 3660 s | NA      | 3660 s | 3660 s  | 3660 s    | 3660 s | 3660 s | 3660 s  | 3660 s    | 3660 s | 3660 s    | 3660 s    |
|                                                                   | 150CS115 | 4150 s | 4150 s | 4150 s  | 4150 s  | 4150 s | NA      | 4150 s | 4150 s  | 4150 s    | 4150 s | 4150 s | 4150 s  | 4150 s    | 4150 s | 4150 s    | 4150 s    |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

#### C Design Tables

# **Selector+** PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

Lined One Side (Includes twin stud wall systems)

| Maximum Wall Pressure:                                            | 0.25kF   | a       |         |         |         |         |         | Maxin   | num St  | tud Ce    | ntres:  | 600mr   | n       |           |         | N         | logged    |
|-------------------------------------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|-----------|---------|-----------|-----------|
| Lining Side 1 (no of layers x thickness in mm)                    |          | 1x10    |         | 1x13    |         | 1)      | (13     |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |           |
| Lining Side 2 (no of layers x thickness in mm)                    |          | 1x10    |         | 1x13    |         | 2>      | (13     |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |           |
|                                                                   | FRL      | Nil     | Nil     | -/30/30 | -/60/60 | Nil     | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil     | Nil     | -/90/90 | -/120/120 | Nil     | -/120/120 | -/180/180 |
| Layout                                                            | Stud     |         | ·       |         |         |         |         |         | Wall He | eights (m | m)      |         |         |           |         |           |           |
|                                                                   | 51CS50   | 2320 d  | NA      | 2320 d  | 2320 d  | 2320 d    | 2320 d  | 2320 d  | 2320 d  | 2320 d    | 2320 d  | 2320 d    | 1900 f    |
|                                                                   | 64CS50   | 2720 d  | NA      | 2750 s  | 2750 s  | 2750 s    | 2720 d  | 2720 d  | 2720 d  | 2720 d    | 2750 d  | 2750 d    | 2300 f    |
|                                                                   | 64CS75   | 3130 d  | 3250 d  | 3250 d  | 3250 d  | 3250 d  | NA      | 3280 d  | 3280 d  | 3280 d    | 3130 d  | 3250 d  | 3250 d  | 3250 d    | 3280 d  | 3280 d    | 2700 f    |
|                                                                   | 64CS115  | 3530 d  | 3580 d  | 3580 d  | 3580 d  | 3580 d  | NA      | 3590 d  | 3590 d  | 3590 d    | 3530 d  | 3580 d  | 3580 d  | 3580 d    | 3590 d  | 3590 d    | 3000 f    |
|                                                                   | 76CS55   | 3200 2d | 3240 2d | 3240 2d | 3240 2d | 3240 2d | NA      | 3250 2d | 3250 2d | 3250 2d   | 3200 2d | 3240 2d | 3240 2d | 3240 2d   | 3250 2d | 3250 2d   | 2700 f    |
|                                                                   | 76CS75   | 3580 2d | 3820 2d | 3820 2d | 3820 2d | 3820 2d | NA      | 3870 2d | 3870 2d | 3870 2d   | 3580 2d | 3820 2d | 3820 2d | 3820 2d   | 3870 2d | 3870 2d   | 3000 f    |
| Decad to single cide of single about                              | 76CS115  | 4050 2d | NA      | 4050 2d | 4050 2d | 4050 2d   | 4050 2d | 4050 2d | 4050 2d | 4050 2d   | 4050 2d | 4050 2d   | 3500 f    |
| Board to single side of single stud<br>System ST1616F illustrated | 92CS55   | 3610 2s | NA      | 3610 2s | 3610 2s | 3610 2s   | 3610 2s | 3610 2s | 3610 2s | 3610 2s   | 3610 2s | 3610 2s   | 3500 f    |
|                                                                   | 92CS75   | 4130 2d | 4180 2d | 4180 2d | 4180 2d | 4180 2d | NA      | 4200 2d | 4200 2d | 4200 2d   | 4130 2d | 4180 2d | 4180 2d | 4180 2d   | 4200 2d | 4200 2d   | 3500 f    |
|                                                                   | 92CS115  | 4690 2d | NA      | 4690 2d | 4690 2d | 4690 2d   | 4690 2d | 4690 2d | 4690 2d | 4690 2d   | 4690 2d | 4690 2d   | 4000 f    |
|                                                                   | 150CS75  | 5330 2h | 5370 2s | 5370 2s | 5370 2s | 5370 2s | NA      | 5370 2s | 5370 2s | 5370 2s   | 5330 2h | 5370 2s | 5370 2s | 5370 2s   | 5370 2s | 5370 2s   | 5000 f    |
|                                                                   | 150CS115 | 5330 2h | 6810 3s | 6810 3s | 6810 3s | 6810 3s | NA      | 6810 3s | 6810 3s | 6810 3s   | 5330 2h | 6810 3s | 6810 3s | 6810 3s   | 6810 3s | 6810 3s   | 5900 f    |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

#### **Lined Both Sides**

| Maximum Wall Pressure:                                         | 0.35kP   | a      |        |         |         |        |         | Maxim   | num St  | ud Ce     | ntres: | 600mr  | n       |           | Nog     | gings Op  | otional   |
|----------------------------------------------------------------|----------|--------|--------|---------|---------|--------|---------|---------|---------|-----------|--------|--------|---------|-----------|---------|-----------|-----------|
| Lining Side 1 (no of layers x thickness in mm)                 |          | 1x10   |        | 1x13    |         | 1x     | :13     |         | 1x16    |           | 2x10   |        | 2x13    |           |         | 2x16      |           |
| Lining Side 2 (no of layers x thickness in mm)                 |          | 1x10   |        | 1x13    |         | 2x     | :13     |         | 1x16    |           | 2x10   |        | 2x13    |           |         | 2x16      |           |
|                                                                | FRL      | Nil    | Nil    | -/30/30 | -/60/60 | Nil    | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil    | Nil    | -/90/90 | -/120/120 | Nil     | -/120/120 | -/180/180 |
| Layout                                                         | Stud     |        |        |         |         |        |         |         | Wall He | eights (m | m)     |        |         |           |         |           |           |
|                                                                | 51CS50   | 2420 d | 2810 d | 2810 d  | 2810 d  | 2810 d | 2810 d  | 3000 d  | 3000 d  | 3000 d    | 2420 d | 2810 d | 2810 d  | 2600 f    | 3000 d  | 3000 d    | 1900 f    |
|                                                                | 64CS50   | 2930 d | 3290 d | 3290 d  | 3290 d  | 3290 d | 3290 d  | 3450 d  | 3450 d  | 3450 d    | 2930 d | 3290 d | 3290 d  | 3100 f    | 3450 d  | 3450 d    | 2300 f    |
|                                                                | 64CS75   | 3490 d | 3750 d | 3750 d  | 3750 d  | 3750 d | 3750 d  | 3840 d  | 3840 d  | 3840 d    | 3490 d | 3750 d | 3750 d  | 3500 f    | 3840 d  | 3840 d    | 2700 f    |
|                                                                | 64CS115  | 3700 d | 3940 d | 3940 d  | 3940 d  | 3940 d | 3940 d  | 3990 d  | 3990 d  | 3990 d    | 3700 d | 3940 d | 3940 d  | 3900 f    | 3990 d  | 3990 d    | 3000 f    |
|                                                                | 76CS55   | 3250 d | 3650 d | 3650 d  | 3650 d  | 3650 d | 3650 d  | 3780 d  | 3780 d  | 3780 d    | 3250 d | 3650 d | 3650 d  | 3650 d    | 3780 d  | 3780 d    | 2700 f    |
|                                                                | 76CS75   | 3810 h | 4430 d | 4430 d  | 4430 d  | 4430 d | 4430 d  | 4620 d  | 4620 d  | 4620 d    | 3810 h | 4430 d | 4430 d  | 4000 f    | 4620 d  | 4620 d    | 3000 f    |
|                                                                | 76CS115  | 3810 h | 4600 d | 4600 d  | 4600 d  | 4600 d | 4600 d  | 4770 d  | 4770 d  | 4770 d    | 3810 h | 4600 d | 4600 d  | 4500 f    | 4770 d  | 4770 d    | 3500 f    |
| Board to each side of single stud<br>System S1616F illustrated | 92CS55   | 3810 h | 4390 d | 4390 d  | 4390 d  | 4390 d | 4390 d  | 4600 d  | 4600 d  | 4600 d    | 3810 h | 4390 d | 4390 d  | 4390 d    | 4600 d  | 4600 d    | 3500 f    |
|                                                                | 92CS75   | 3810 h | 4840 d | 4840 d  | 4840 d  | 4840 d | 4840 d  | 5010 d  | 5010 d  | 5010 d    | 3810 h | 4840 d | 4840 d  | 4700 f    | 5010 d  | 5010 d    | 3500 f    |
|                                                                | 92CS115  | 3810 h | 5060 d | 5060 d  | 5060 d  | 5060 d | 5060 d  | 5200 d  | 5200 d  | 5200 d    | 3810 h | 5060 d | 5060 d  | 5060 d    | 5200 d  | 5200 d    | 4000 f    |
|                                                                | 150CS75  | 3810 h | 5710 h | 5710 h  | 5710 h  | 5710 h | 5710 h  | 6370 d  | 6370 d  | 6370 d    | 3810 h | 5710 h | 5710 h  | 5710 h    | 6370 d  | 6370 d    | 5000 f    |
|                                                                | 150CS115 | 3810 h | 5710 h | 5710 h  | 5710 h  | 5710 h | 5710 h  | 6890 2d | 6890 2d | 6890 2d   | 3810 h | 5710 h | 5710 h  | 5710 h    | 6890 2d | 6890 2d   | 5900 f    |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

# C Design Tables Selector+ PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

### **Lined Both Sides**

| Maximum Wall Pressure                                          | : <b>0.35kP</b> | Pa     |         |         |         |         |         | Maxin   | num St  | tud Ce    | ntres: | 400m    | m       |           | Nog     | gings O <sub>l</sub> | ptional   |
|----------------------------------------------------------------|-----------------|--------|---------|---------|---------|---------|---------|---------|---------|-----------|--------|---------|---------|-----------|---------|----------------------|-----------|
| Lining Side 1 (no of layers x thickness in mm)                 |                 | 1x10   |         | 1x13    |         | 1x      | 13      |         | 1x16    |           | 2x10   |         | 2x13    |           |         | 2x16                 |           |
| Lining Side 2 (no of layers x thickness in mm)                 |                 | 1x10   |         | 1x13    |         | 2x      | 13      |         | 1x16    |           | 2x10   |         | 2x13    |           |         | 2x16                 |           |
|                                                                | FRL             | Nil    | Nil     | -/30/30 | -/60/60 | Nil     | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil    | Nil     | -/90/90 | -/120/120 | Nil     | -/120/120            | -/180/180 |
| Layout                                                         | Stud            |        |         |         |         |         |         |         | Wall He | eights (m | m)     |         |         |           |         |                      |           |
|                                                                | 51CS50          | 2750 d | 3100 d  | 3100 d  | 3100 d  | 3100 d  | 2900 f  | 3210 d  | 3210 d  | 3210 d    | 2750 d | 3100 d  | 3100 d  | 2600 f    | 3210 d  | 3210 d               | 1900 f    |
|                                                                | 64CS50          | 3260 d | 3570 d  | 3570 d  | 3570 d  | 3570 d  | 3500 f  | 3740 d  | 3740 d  | 3740 d    | 3260 d | 3570 d  | 3570 d  | 3100 f    | 3740 d  | 3740 d               | 2300 f    |
|                                                                | 64CS75          | 3810 d | 4030 d  | 4030 d  | 4030 d  | 4030 d  | 4030 d  | 4170 d  | 4170 d  | 4170 d    | 3810 d | 4030 d  | 4030 d  | 3500 f    | 4170 d  | 4170 d               | 2700 f    |
|                                                                | 64CS115         | 4090 d | 4280 d  | 4280 d  | 4280 d  | 4280 d  | 4280 d  | 4390 d  | 4390 d  | 4390 d    | 4090 d | 4280 d  | 4280 d  | 3900 f    | 4390 d  | 4390 d               | 3000 f    |
|                                                                | 76CS55          | 3680 d | 4010 d  | 4010 d  | 4010 d  | 4010 d  | 4010 d  | 4160 d  | 4160 d  | 4160 d    | 3680 d | 4010 d  | 4010 d  | 3700 f    | 4160 d  | 4160 d               | 2700 f    |
|                                                                | 76CS75          | 4350 d | 4830 d  | 4830 d  | 4830 d  | 4830 d  | 4500 f  | 5050 d  | 5050 d  | 5050 d    | 4350 d | 4830 d  | 4830 d  | 4000 f    | 5050 d  | 5050 d               | 3000 f    |
|                                                                | 76CS115         | 4630 d | 5070 d  | 5070 d  | 5070 d  | 5070 d  | 5000 f  | 5260 d  | 5260 d  | 5260 d    | 4630 d | 5070 d  | 5070 d  | 4500 f    | 5260 d  | 5260 d               | 3500 f    |
| Board to each side of single stud<br>System S1616F illustrated | 92CS55          | 4430 d | 4740 d  | 4740 d  | 4740 d  | 4740 d  | 4740 d  | 4950 d  | 4950 d  | 4950 d    | 4430 d | 4740 d  | 4740 d  | 4600 f    | 4950 d  | 4950 d               | 3500 f    |
|                                                                | 92CS75          | 4810 d | 5350 d  | 5350 d  | 5350 d  | 5350 d  | 5200 f  | 5540 d  | 5540 d  | 5540 d    | 4810 d | 5350 d  | 5350 d  | 4700 f    | 5540 d  | 5540 d               | 3500 f    |
|                                                                | 92CS115         | 5150 d | 5650 d  | 5650 d  | 5650 d  | 5650 d  | 5650 d  | 5810 d  | 5810 d  | 5810 d    | 5150 d | 5650 d  | 5650 d  | 5200 f    | 5810 d  | 5810 d               | 4000 f    |
|                                                                | 150CS75         | 5710 h | 6890 2d | 7050 2d | 7050 2d | 7050 2d   | 5710 h | 6890 2d | 6890 2d | 6700 f    | 7050 2d | 7050 2d              | 5000 f    |
|                                                                | 150CS115        | 5710 h | 7500 2d | 7590 2d | 7590 2d | 7590 2d   | 5710 h | 7500 2d | 7500 2d | 7500 2d   | 7590 2d | 7590 2d              | 5900 f    |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

**Selector+** PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

**Lined One Side** (Includes staggered stud wall systems)

0.35kPa Serviceability Limit State Load, 0.53kPa Ultimate Limit State Load.

| Maximum Wall Pressure                                             | : <b>0.35kF</b> | a      |        |         |         |        |         | Maximum Stud Centres: 600mm |         |           |        |        |         |           |        | Not Nogged |           |  |  |
|-------------------------------------------------------------------|-----------------|--------|--------|---------|---------|--------|---------|-----------------------------|---------|-----------|--------|--------|---------|-----------|--------|------------|-----------|--|--|
| Lining Side 1 (no of layers x thickness in mm)                    |                 | 1x10   |        | 1x13    |         | 1x     | (13     |                             | 1x16    |           | 2x10   |        | 2x13    |           |        | 2x16       |           |  |  |
| Lining Side 2 (no of layers x thickness in mm)                    |                 | 1x10   |        | 1x13    |         | 2x     | (13     |                             | 1x16    |           | 2x10   |        | 2x13    |           |        | 2x16       |           |  |  |
|                                                                   | FRL             | Nil    | Nil    | -/30/30 | -/60/60 | Nil    | -/90/90 | Nil                         | -/60/60 | -/90/90   | Nil    | Nil    | -/90/90 | -/120/120 | Nil    | -/120/120  | -/180/180 |  |  |
| Layout                                                            | Stud            |        |        |         |         |        |         |                             | Wall He | eights (m | ım)    |        |         |           |        |            |           |  |  |
|                                                                   | 51CS50          | 2070 d | 2070 d | 2070 d  | 2070 d  | 2070 d | NA      | 2070 d                      | 2070 d  | 2070 d    | 2070 d | 2070 d | 2070 d  | 2070 d    | 2070 d | 2070 d     | 1900 f    |  |  |
|                                                                   | 64CS50          | 2140 s | 2140 s | 2140 s  | 2140 s  | 2140 s | NA      | 2140 s                      | 2140 s  | 2140 s    | 2140 s | 2140 s | 2140 s  | 2140 s    | 2140 s | 2140 s     | 2140 s    |  |  |
|                                                                   | 64CS75          | 2590 s | 2590 s | 2590 s  | 2590 s  | 2590 s | NA      | 2590 s                      | 2590 s  | 2590 s    | 2590 s | 2590 s | 2590 s  | 2590 s    | 2590 s | 2590 s     | 2590 s    |  |  |
|                                                                   | 64CS115         | 3160 s | 3160 s | 3160 s  | 3160 s  | 3160 s | NA      | 3160 s                      | 3160 s  | 3160 s    | 3160 s | 3160 s | 3160 s  | 3160 s    | 3160 s | 3160 s     | 3000 f    |  |  |
|                                                                   | 76CS55          | 2350 s | 2350 s | 2350 s  | 2350 s  | 2350 s | NA      | 2350 s                      | 2350 s  | 2350 s    | 2350 s | 2350 s | 2350 s  | 2350 s    | 2350 s | 2350 s     | 2350 s    |  |  |
|                                                                   | 76CS75          | 2740 s | 2740 s | 2740 s  | 2740 s  | 2740 s | NA      | 2740 s                      | 2740 s  | 2740 s    | 2740 s | 2740 s | 2740 s  | 2740 s    | 2740 s | 2740 s     | 2740 s    |  |  |
| December simple side of simple shad                               | 76CS115         | 3270 s | 3270 s | 3270 s  | 3270 s  | 3270 s | NA      | 3270 s                      | 3270 s  | 3270 s    | 3270 s | 3270 s | 3270 s  | 3270 s    | 3270 s | 3270 s     | 3270 s    |  |  |
| Board to single side of single stud<br>System SS1616F illustrated | 92CS55          | 2510 s | 2510 s | 2510 s  | 2510 s  | 2510 s | NA      | 2510 s                      | 2510 s  | 2510 s    | 2510 s | 2510 s | 2510 s  | 2510 s    | 2510 s | 2510 s     | 2510 s    |  |  |
|                                                                   | 92CS75          | 2920 s | 2920 s | 2920 s  | 2920 s  | 2920 s | NA      | 2920 s                      | 2920 s  | 2920 s    | 2920 s | 2920 s | 2920 s  | 2920 s    | 2920 s | 2920 s     | 2920 s    |  |  |
|                                                                   | 92CS115         | 3400 s | 3400 s | 3400 s  | 3400 s  | 3400 s | NA      | 3400 s                      | 3400 s  | 3400 s    | 3400 s | 3400 s | 3400 s  | 3400 s    | 3400 s | 3400 s     | 3400 s    |  |  |
|                                                                   | 150CS75         | 3350 s | 3350 s | 3350 s  | 3350 s  | 3350 s | NA      | 3350 s                      | 3350 s  | 3350 s    | 3350 s | 3350 s | 3350 s  | 3350 s    | 3350 s | 3350 s     | 3350 s    |  |  |
|                                                                   | 150CS115        | 3800 s | 3800 s | 3800 s  | 3800 s  | 3800 s | NA      | 3800 s                      | 3800 s  | 3800 s    | 3800 s | 3800 s | 3800 s  | 3800 s    | 3800 s | 3800 s     | 3800 s    |  |  |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

## C Design Tables

# Selector+ PLASTERBOARD SYSTEMS

# **Maximum Wall Heights - Non Load Bearing Steel C Studs**

**Lined One Side** (Includes twin stud wall systems)

0.35kPa Serviceability Limit State Load, 0.53kPa Ultimate Limit State Load.

| Maximum Wall Pressure:                                            | 0.35kP   | a       |         |         |         |         |         | Maxin   | num St  | ud Ce     | ntres:  | 600mr   | n       |           | Nogged  |           |           |  |  |
|-------------------------------------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|-----------|---------|-----------|-----------|--|--|
| Lining Side 1 (no of layers x thickness in mm)                    |          | 1x10    |         | 1x13    |         | 1x      | (13     |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |           |  |  |
| Lining Side 2 (no of layers x thickness in mm)                    |          | 1x10    |         | 1x13    |         | 2x      | (13     |         | 1x16    |           | 2x10    |         | 2x13    |           |         | 2x16      |           |  |  |
|                                                                   | FRL      | Nil     | Nil     | -/30/30 | -/60/60 | Nil     | -/90/90 | Nil     | -/60/60 | -/90/90   | Nil     | Nil     | -/90/90 | -/120/120 | Nil     | -/120/120 | -/180/180 |  |  |
| Layout                                                            | Stud     |         |         |         |         |         |         |         | Wall He | eights (m | ım)     |         |         |           |         |           |           |  |  |
|                                                                   | 51CS50   | 2070 d  | NA      | 2070 d  | 2070 d  | 2070 d    | 2070 d  | 2070 d  | 2070 d  | 2070 d    | 2070 d  | 2070 d    | 1900 f    |  |  |
|                                                                   | 64CS50   | 2340 s  | NA      | 2340 s  | 2340 s  | 2340 s    | 2340 s  | 2340 s  | 2340 s  | 2340 s    | 2340 s  | 2340 s    | 2300 f    |  |  |
|                                                                   | 64CS75   | 2800 d  | NA      | 2900 d  | 2900 d  | 2900 d    | 2800 d  | 2800 d  | 2800 d  | 2800 d    | 2900 d  | 2900 d    | 2700 f    |  |  |
|                                                                   | 64CS115  | 3150 d  | 3170 d  | 3170 d  | 3170 d  | 3170 d  | NA      | 3180 d  | 3180 d  | 3180 d    | 3150 d  | 3170 d  | 3170 d  | 3170 d    | 3180 d  | 3180 d    | 3000 f    |  |  |
|                                                                   | 76CS55   | 2760 s  | NA      | 2760 s  | 2760 s  | 2760 s    | 2760 s  | 2760 s  | 2760 s  | 2760 s    | 2760 s  | 2760 s    | 2700 f    |  |  |
|                                                                   | 76CS75   | 3200 d  | 3370 2d | 3370 2d | 3370 2d | 3370 2d | NA      | 3410 2d | 3410 2d | 3410 2d   | 3200 d  | 3370 2d | 3370 2d | 3370 2d   | 3410 2d | 3410 2d   | 3000 f    |  |  |
|                                                                   | 76CS115  | 3620 2d | NA      | 3620 2d | 3620 2d | 3620 2d   | 3620 2d | 3620 2d | 3620 2d | 3620 2d   | 3620 2d | 3620 2d   | 3500 f    |  |  |
| Board to single side of single stud<br>System ST1616F illustrated | 92CS55   | 3060 2s | NA      | 3060 2s | 3060 2s | 3060 2s   | 3060 2s | 3060 2s | 3060 2s | 3060 2s   | 3060 2s | 3060 2s   | 3060 2s   |  |  |
|                                                                   | 92CS75   | 3700 2d | NA      | 3700 2d | 3700 2d | 3700 2d   | 3700 2d | 3700 2d | 3700 2d | 3700 2d   | 3700 2d | 3700 2d   | 3500 f    |  |  |
|                                                                   | 92CS115  | 3810 2h | 4200 2d | 4200 2d | 4200 2d | 4200 2d | NA      | 4200 2d | 4200 2d | 4200 2d   | 3810 2h | 4200 2d | 4200 2d | 4200 2d   | 4200 2d | 4200 2d   | 4000 f    |  |  |
|                                                                   | 150CS75  | 3810 2h | 4830 2s | 4830 2s | 4830 2s | 4830 2s | NA      | 4830 2s | 4830 2s | 4830 2s   | 3810 2h | 4830 2s | 4830 2s | 4830 2s   | 4830 2s | 4830 2s   | 4830 2s   |  |  |
|                                                                   | 150CS115 | 3810 2h | 5530 2s | 5530 2s | 5530 2s | 5530 2s | NA      | 5530 2s | 5530 2s | 5530 2s   | 3810 2h | 5530 2s | 5530 2s | 5530 2s   | 5530 2s | 5530 2s   | 5530 2s   |  |  |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pgs C2.1 & C2.2 • For stud designations refer Section A1

# Non Load Bearing Steel Shaft Walls

#### **Notes to Tables**

#### Symbols:

d = deflection limits

h = head track capacity limits

f = fire height limits

- · Minimum yield stress of steel sections to be 270MPa
- Deflection limit is height/240 to a maximum of 20mm for CH studs
- Wall heights tabled are for single length studs at maximum centres shown
- The tabulated heights need to be checked against head track reaction capacity as listed below
- Wall heights tabled are <u>not</u> for axial loads but include self weight and lateral pressures stated
- Wall heights tabled are not applicable to steel lipped C section wall studs
- Shelf loading is not permitted for tabulated maximum wall heights. Refer Boral Plasterboard for maximum heights with shelf loadings
- Tabulated heights are for internal walls only. Refer to Boral Plasterboard if walls are subjected to external loadings
- All plasterboard is to be manufactured by Boral Plasterboard in Australia
- Walls are to be constructed with Boral Firestop® plasterboard to Boral Plasterboard standard Shaft Wall fire rated wall details as appropriate
- For fire service 50Pa pressure assumed where pressures are >50Pa and fire loadings are likely to be coincident, Boral Plasterboard should be consulted
- Detailed seismic analysis requires site/building specific parameters and has not been performed, however tabulated wall heights comply with AS 1170.4 clause 5.2.1, category 3, provided that:
  - the walls have been designed for 0.25kPa pressure (minimum)
  - the walls, including attachments, have a total mass (Gc) not exceeding 100kg/m<sup>2</sup>

| - | acceleration a | ≤ | 0.08 |
|---|----------------|---|------|
| - | Site Factor S  | ≤ | 2.0  |
| - | ах             | ≤ | 2.0  |
| - | ac             | ≤ | 1.0  |
| - | Cc1            | ≤ | 0.9  |
| - | I              | = | 1.0  |

 Wall heights for systems tabled for CH studs are calculated with head runner min 50mm flange x 0.80mm BMT 20mm max clearance at top of stud and using head track reaction capacities as follows:

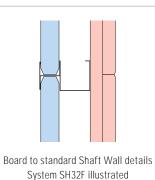
#### **Head Track Reaction Capacities**

| Stud            | Head track reaction capacity (kN) |
|-----------------|-----------------------------------|
| 64CH55, 102CH55 | 0.28                              |
| 64CH90, 102CH90 | 0.44                              |

- Refer to Boral Plasterboard where reactions and/or required clearance at top of stud exceeds the above
- Where lesser clearance is required other head track reaction capacities are as follows, with minimum 0.80mm BMT standard J runner at head and base and 10mm max clearance at top of stud:

#### **Head Track Reaction Capacities**

| Stud            | Head track reaction capacity (kN) |
|-----------------|-----------------------------------|
| 64CH55, 102CH55 | 0.40                              |
| 64CH90, 102CH90 | 0.75                              |

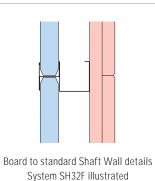

- Alternative head track installations must be checked with head track capacity tables
- The allowable head track reactions listed above rely on the plasterboard for restraint head track installation must be strictly in accordance with the appropriate details.

# C Design Tables Selector+ PLASTERBOARD SYSTEMS

## Maximum Wall Heights - Non Load Bearing Shaft Walls

| System Ref                              |                    | SH       | 16F             |      | SH26F                 |                    | SH     | 129F              | SH32F |                   |  |
|-----------------------------------------|--------------------|----------|-----------------|------|-----------------------|--------------------|--------|-------------------|-------|-------------------|--|
| Side 1 (no of layers x thickness in mm) |                    | 1x       | (25             |      | 1x25                  |                    | 1>     | <b>&lt;</b> 25    | 1:    | x25               |  |
| Side 2 (no of layers x thickness in mm) | 1x                 | (16      |                 | 2x13 |                       | 1x13               | + 1x16 | 2x16              |       |                   |  |
|                                         | FRL Direction From | Nil      | -/60/60<br>Both | Nil  | -/120/90<br>Occupancy | -/120/120<br>Shaft | Nil    | -/120/120<br>Both | Nil   | -/120/120<br>Both |  |
| Layout                                  | Stud               | Wall Hei | ghts (mm)       |      | '                     |                    |        |                   |       |                   |  |

#### Maximum Wall Pressure: 0.25kPa




| 64CH55  | 2950 d | 3730 h | 3730 h |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 64CH90  | 3460 d | 4380 d | 4380 d |
| 102CH55 | 3730 h |
| 102CH90 | 4980 d | 5510 d | 5510 d |
|         |        |        |        |        |        |        |        |        |        |
|         |        |        |        |        |        |        |        |        |        |

Maximum Stud Centres: 600mm

Maximum Stud Centres: 600mm

#### Maximum Wall Pressure: 0.35kPa



| 64CH55  | 2640 d | 2660 h | 2660 h |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 64CH90  | 3090 d | 3890 d | 3890 d |
| 102CH55 | 2660 h |
| 102CH90 | 4190 h |
|         |        |        |        |        |        |        |        |        |        |
|         |        |        |        |        |        |        |        |        |        |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pg C2.11 • For stud designations refer Section A1

# Non Load Bearing Steel D-Stud™ Walls

#### **General Notes to Tables**

- Deflection limit is height/240 to a maximum of 30mm
- Wall heights tabled are for non load bearing walls and not for axial loads, but include self weight and lateral pressures stated
- Shelf loading is not permitted for the tabulated maximum wall heights. Refer Boral Plasterboard for maximum heights with shelf loadings
- The maximum heights tabulated are based on testing performed using Boral Firestop® plasterboard manufactured by Boral Australian Gypsum Ltd
- Minimum yield stress of steel sections to be 550MPa UNO
- Walls to be constructed with 13mm or 16mm Boral Firestop® or Wet Area Firestop® or 10mm Boral Standard Core plasterboard to standard Boral Plasterboard fire rated D-Stud wall details

#### **Head Track Reaction Capacities**

| Plasterboard                      | 1x13 | 1x16 | 2x16 or more |
|-----------------------------------|------|------|--------------|
| Head Track Reaction Capacity (kN) | 0.35 | 0.38 | 0.73         |

#### Note:

Heights shaded in D-Stud wall tables on the following pages exceed these reaction capacities and should be referred to Boral Plasterboard for appropriate detailing and approval

- Deflection heads to be designed and used as required.
- 50Pa pressure assumed for fire design. Where greater pressures and fire loadings are likely to be coincident Boral should be consulted
- Taller walls than those listed are possible with other sections.
   Refer Boral Plasterboard sales offices
- For construction details refer Boral Plasterboard publication `D-Stud High Performance Wall Systems'.

#### Non Load Bearing D-Stud Cinema Walls

Max Wall Heights (mm) - Max Wall Pressure: 0.25kPa

|           |       | Stud ctrs (mm) |       |  |  |  |  |  |  |  |  |
|-----------|-------|----------------|-------|--|--|--|--|--|--|--|--|
| Stud Size | 900   | 1000           | 1200  |  |  |  |  |  |  |  |  |
| 2xZ15012  | 8500  | 8300           | 8000  |  |  |  |  |  |  |  |  |
| 2xZ15015  | 9000  | 8800           | 8400  |  |  |  |  |  |  |  |  |
| 2xZ15019  | 9500  | 9300           | 8900  |  |  |  |  |  |  |  |  |
| 2xZ20015  | 11000 | 10700          | 10200 |  |  |  |  |  |  |  |  |
| 2xZ20019  | 11700 | 11400          | 10900 |  |  |  |  |  |  |  |  |
| 2xZ25019  | 13400 | 13000          | 12500 |  |  |  |  |  |  |  |  |

- Limiting heights indicated are calculated structural heights
- Minimum yield stress of steel sections to be 450MPa.

## C | Design Tables

# **Selector+** PLASTERBOARD SYSTEMS

# Maximum Wall Heights - Non Load Bearing Steel D-Stud™ Walls

**Lined Both Sides** (Includes staggered and twin stud wall systems)

| Lining Side 1 (no of layers x thickness | s in mm) | 1    | x13     | 1    | x13     |      | 1x16    |         | 1         | x16            |                | 2x13              |         |      | 2x16    |           |      | 4x16      |
|-----------------------------------------|----------|------|---------|------|---------|------|---------|---------|-----------|----------------|----------------|-------------------|---------|------|---------|-----------|------|-----------|
| Lining Side 2 (no of layers x thickness | s in mm) | 1    | x13     | 1    | x16     |      | 1x16    |         | 1x16      | + 1x10         |                | 2x13              |         |      | 2x16    |           |      | 4x16      |
|                                         | FRL      | Nil  | -/30/30 | Nil  | -/60/60 | Nil  | -/30/30 | -/60/60 | Nil       | -/90/90        | Nil            | -/60/60           | -/90/90 | Nil  | -/90/90 | -/120/120 | Nil  | -/120/120 |
| Layout                                  | Stud     |      |         |      |         |      |         | Wall He | eights (n | nm) Refer page | e C2.13 re sha | ded wall height c | ells    |      |         |           |      |           |
|                                         | 40DS55   | 2182 | 2182    | 2182 | 2182    | 2219 | 2219    | 2219    | 2219      | 2219           | 2219           | 2219              | 2219    | 2219 | 2219    | 2219      | 2219 | 2219      |
|                                         | 40DS60   | 2234 | 2234    | 2234 | 2234    | 2268 | 2268    | 2268    | 2268      | 2268           | 2268           | 2268              | 2268    | 2268 | 2268    | 2268      | 2268 | 2268      |
|                                         | 40DS75   | 2373 | 2373    | 2373 | 2373    | 2401 | 2401    | 2401    | 2401      | 2401           | 2401           | 2401              | 2401    | 2401 | 2401    | 2401      | 2401 | 2401      |
|                                         | 50DS60   | 2569 | 2569    | 2569 | 2569    | 2590 | 2590    | 2590    | 2590      | 2590           | 2590           | 2590              | 2590    | 2590 | 2590    | 2590      | 2590 | 2590      |
|                                         | 50DS75   | 2741 | 2741    | 2741 | 2741    | 2755 | 2755    | 2755    | 2755      | 2755           | 2755           | 2755              | 2755    | 2755 | 2755    | 2755      | 2755 | 2755      |
|                                         | 61DS75   | 3279 | 3279    | 3279 | 3279    | 3309 | 3309    | 3309    | 3309      | 3309           | 3309           | 3309              | 3309    | 3651 | 3651    | 3651      | 4113 | 3651      |
|                                         | 61DS100  | 3565 | 3565    | 3565 | 3565    | 3587 | 3587    | 3587    | 3587      | 3587           | 3587           | 3587              | 3587    | 3866 | 3866    | 3866      | 4269 | 3866      |
| Board to single side of single stud     | 64DS75   | 3358 | 3358    | 3358 | 3358    | 3384 | 3384    | 3384    | 3384      | 3384           | 3384           | 3384              | 3384    | 3692 | 3692    | 3692      | 4132 | 3692      |
| System D1616F illustrated               | 64DS100  | 3746 | 3746    | 3746 | 3746    | 3762 | 3762    | 3762    | 3762      | 3762           | 3762           | 3762              | 3762    | 3998 | 3998    | 3998      | 4361 | 3998      |
|                                         | 64DS120  | 3999 | 3999    | 3999 | 3999    | 4010 | 4010    | 4010    | 4010      | 4010           | 4010           | 4010              | 4010    | 4200 | 4200    | 4200      | 4512 | 4200      |
|                                         | 96DS75   | 4795 | 4795    | 4795 | 4795    | 4854 | 4854    | 4854    | 4854      | 4854           | 4854           | 4854              | 4854    | 4854 | 4854    | 4854      | 4854 | 4854      |
|                                         | 96DS100  | 5304 | 5304    | 5304 | 5304    | 5349 | 5349    | 5349    | 5349      | 5349           | 5349           | 5349              | 5349    | 5349 | 5349    | 5349      | 5349 | 5349      |
|                                         | 96DS120  | 5646 | 5646    | 5646 | 5646    | 5683 | 5683    | 5683    | 5683      | 5683           | 5683           | 5683              | 5683    | 5683 | 5683    | 5683      | 5683 | 5683      |
|                                         | 120DS70  | 6100 | 6100    | 6100 | 6100    | 6136 | 6136    | 6136    | 6136      | 6136           | 6136           | 6136              | 6136    | 6136 | 6136    | 6136      | 6136 | 6136      |
|                                         | 120DS90  | 6578 | 6578    | 6578 | 6578    | 6604 | 6604    | 6604    | 6604      | 6604           | 6604           | 6604              | 6604    | 6604 | 6604    | 6604      | 6604 | 6604      |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pg C2.13 • For stud designations refer Section A1

## C | Design Tables

**Selector+** PLASTERBOARD SYSTEMS

# Maximum Wall Heights - Non Load Bearing Steel D-Stud™ Walls

**Lined Both Sides** (Includes staggered & twin stud wall systems)

#### Maximum Wall Pressure: 0.25kPa

#### Maximum Stud Centres: 400mm

| Lining Side 1 (no of layers x thickness |         |      | x13            |      | x13            |      | 1x16       | 1x16 1x16<br>1x16 1x16 + 1x10 |      | 2x13<br>2x13      |      |         |        | 2x16 |         | 4x16<br>4x16 |      |           |
|-----------------------------------------|---------|------|----------------|------|----------------|------|------------|-------------------------------|------|-------------------|------|---------|--------|------|---------|--------------|------|-----------|
| Lining Side 2 (no of layers x thickness | FRL     | Nil  | x13<br>-/30/30 | Nil  | ×16<br>-/60/60 | Nil  | -/30/30    | -/60/60                       | Nil  | + IXIU<br>-/90/90 | Nil  | -/60/60 | /00/00 | Nil  | 2x16    | -/120/120    | Nil  | -/120/120 |
| Layout                                  | Stud    | IVII | -/30/30        | IVII | -/00/00        |      | Wall Heigh |                               |      |                   |      |         |        |      | -190/90 | -/ 120/ 120  | IVII | -/120/120 |
| Layout                                  | 40DS55  | 2467 | 2467           | 2467 | 2467           | 2502 | 2502       | 2502                          | 2502 | 2500 f            | 2502 | 2502    | 2502   | 2502 | 2502    | 2502         | 2502 | 2502      |
| ľ                                       | 40DS60  | 2529 | 2529           | 2529 | 2529           | 2561 | 2561       | 2561                          | 2561 | 2561              | 2561 | 2561    | 2561   | 2561 | 2561    | 2561         | 2561 | 2561      |
|                                         | 40DS75  | 2696 | 2696           | 2696 | 2696           | 2723 | 2723       | 2723                          | 2723 | 2700 f            | 2723 | 2723    | 2723   | 2723 | 2723    | 2723         | 2723 | 2723      |
|                                         | 50DS60  | 2928 | 2928           | 2928 | 2928           | 2949 | 2949       | 2949                          | 2949 | 2900 f            | 2949 | 2949    | 2949   | 2949 | 2949    | 2949         | 2949 | 2949      |
|                                         | 50DS75  | 3132 | 3132           | 3132 | 3132           | 3147 | 3147       | 3147                          | 3147 | 3100 f            | 3147 | 3147    | 3147   | 3147 | 3147    | 3147         | 3147 | 3147      |
|                                         | 61DS75  | 3726 | 3726           | 3726 | 3726           | 3754 | 3754       | 3754                          | 3754 | 3754              | 3754 | 3754    | 3754   | 4083 | 4083    | 4083         | 4569 | 4083      |
|                                         | 61DS100 | 4065 | 4065           | 4065 | 4065           | 4086 | 4086       | 4086                          | 4086 | 4086              | 4086 | 4086    | 4086   | 4353 | 4353    | 4353         | 4776 | 4353      |
| Board to single side of single stud     | 64DS75  | 3822 | 3822           | 3822 | 3822           | 3846 | 3846       | 3846                          | 3846 | 3800 f            | 3846 | 3846    | 3846   | 4140 | 4140    | 4140         | 4600 | 4140      |
| System D1616F illustrated               | 64DS100 | 4279 | 4279           | 4279 | 4279           | 4295 | 4295       | 4295                          | 4295 | 4200 f            | 4295 | 4295    | 4295   | 4522 | 4522    | 4522         | 4900 | 4522      |
|                                         | 64DS120 | 4575 | 4575           | 4575 | 4575           | 4587 | 4587       | 4587                          | 4587 | 4500 f            | 4587 | 4587    | 4587   | 4774 | 4774    | 4774         | 5101 | 4774      |
|                                         | 96DS75  | 5423 | 5423           | 5423 | 5423           | 5476 | 5476       | 5476                          | 5476 | 5400 f            | 5476 | 5476    | 5476   | 5476 | 5476    | 5476         | 5476 | 5476      |
|                                         | 96DS100 | 6025 | 6025           | 6025 | 6025           | 6066 | 6066       | 6066                          | 6066 | 5900 f            | 6066 | 6066    | 6066   | 6066 | 6066    | 6066         | 6066 | 6066      |
|                                         | 96DS120 | 6428 | 6428           | 6428 | 6428           | 6462 | 6462       | 6462                          | 6462 | 6300 f            | 6462 | 6462    | 6462   | 6462 | 6462    | 6462         | 6462 | 6462      |
|                                         | 120DS70 | 6946 | 6946           | 6946 | 6946           | 6980 | 6980       | 6980                          | 6980 | 6980              | 6980 | 6980    | 6980   | 6980 | 6980    | 6980         | 6980 | 6980      |
|                                         | 120DS90 | 7430 | 7430           | 7430 | 7430           | 7450 | 7450       | 7450                          | 7450 | 7450              | 7450 | 7450    | 7450   | 7450 | 7450    | 7450         | 7450 | 7450      |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pg C2.13 • For stud designations refer Section A1

## C Design Tables

# **Selector+** PLASTERBOARD SYSTEMS

# Maximum Wall Heights - Non Load Bearing Steel D-Stud™ Walls

**Lined Both Sides** (Includes staggered & twin stud wall systems)

| iviaximum vvairi ic.                    | 33ui C. <b>U</b> | .JJKI | a       |      |         |      |         |         | ινιαλιι   | mum 5          | iuu Ci         | JIIII CS.         | OUUIII  | 111  |         |           |      |           |
|-----------------------------------------|------------------|-------|---------|------|---------|------|---------|---------|-----------|----------------|----------------|-------------------|---------|------|---------|-----------|------|-----------|
| Lining Side 1 (no of layers x thickness | s in mm)         | 1     | x13     | 1    | x13     |      | 1x16    |         | 1         | x16            |                | 2x13              |         |      | 2x16    |           |      | 4x16      |
| Lining Side 2 (no of layers x thickness | s in mm)         | 1     | x13     | 1    | x16     |      | 1x16    |         | 1x16      | + 1x10         |                | 2x13              |         |      | 2x16    |           |      | 4x16      |
|                                         | FRL              | Nil   | -/30/30 | Nil  | -/60/60 | Nil  | -/30/30 | -/60/60 | Nil       | -/90/90        | Nil            | -/60/60           | -/90/90 | Nil  | -/90/90 | -/120/120 | Nil  | -/120/120 |
| Layout                                  | Stud             |       |         |      |         |      |         | Wall He | eights (n | nm) Refer page | e C2.13 re sha | ded wall height c | ells    |      |         |           |      |           |
|                                         | 40DS55           | 1942  | 1942    | 1942 | 1942    | 1972 | 1972    | 1972    | 1972      | 1972           | 1972           | 1972              | 1972    | 1972 | 1972    | 1972      | 1972 | 1972      |
|                                         | 40DS60           | 1988  | 1988    | 1988 | 1988    | 2015 | 2015    | 2015    | 2015      | 2015           | 2015           | 2015              | 2015    | 2015 | 2015    | 2015      | 2015 | 2015      |
|                                         | 40DS75           | 2112  | 2112    | 2112 | 2112    | 2134 | 2134    | 2134    | 2134      | 2134           | 2134           | 2134              | 2134    | 2134 | 2134    | 2134      | 2134 | 2134      |
|                                         | 50DS60           | 2286  | 2286    | 2286 | 2286    | 2301 | 2301    | 2301    | 2301      | 2301           | 2301           | 2301              | 2301    | 2301 | 2301    | 2301      | 2301 | 2301      |
|                                         | 50DS75           | 2439  | 2439    | 2439 | 2439    | 2448 | 2448    | 2448    | 2448      | 2448           | 2448           | 2448              | 2448    | 2448 | 2448    | 2448      | 2448 | 2448      |
|                                         | 61DS75           | 2920  | 2920    | 2920 | 2920    | 2945 | 2945    | 2945    | 2945      | 2945           | 2945           | 2945              | 2945    | 3230 | 3230    | 3230      | 3230 | 3230      |
|                                         | 61DS100          | 3176  | 3176    | 3176 | 3176    | 3192 | 3192    | 3192    | 3192      | 3192           | 3192           | 3192              | 3192    | 3419 | 3419    | 3419      | 3419 | 3419      |
| Board to single side of single stud     | 64DS75           | 2992  | 2992    | 2992 | 2992    | 3013 | 3013    | 3013    | 3013      | 3013           | 3013           | 3013              | 3013    | 3268 | 3268    | 3268      | 3268 | 3268      |
| System D1616F illustrated               | 64DS100          | 3338  | 3338    | 3338 | 3338    | 3350 | 3350    | 3350    | 3350      | 3350           | 3350           | 3350              | 3350    | 3537 | 3537    | 3537      | 3537 | 3537      |
|                                         | 64DS120          | 3564  | 3564    | 3564 | 3564    | 3570 | 3570    | 3570    | 3570      | 3570           | 3570           | 3570              | 3570    | 3716 | 3716    | 3716      | 3716 | 3716      |
|                                         | 96DS75           | 4274  | 4274    | 4274 | 4274    | 4323 | 4323    | 4323    | 4323      | 4323           | 4323           | 4323              | 4323    | 4323 | 4323    | 4323      | 4323 | 4323      |
|                                         | 96DS100          | 4728  | 4728    | 4728 | 4728    | 4765 | 4765    | 4765    | 4765      | 4765           | 4765           | 4765              | 4765    | 4765 | 4765    | 4765      | 4765 | 4765      |
|                                         | 96DS120          | 5033  | 5033    | 5033 | 5033    | 5062 | 5062    | 5062    | 5062      | 5062           | 5062           | 5062              | 5062    | 5062 | 5062    | 5062      | 5062 | 5062      |
|                                         | 120DS70          | 5438  | 5438    | 5438 | 5438    | 5467 | 5467    | 5467    | 5467      | 5467           | 5467           | 5467              | 5467    | 5467 | 5467    | 5467      | 5467 | 5467      |
|                                         | 120DS90          | 5866  | 5866    | 5866 | 5866    | 5885 | 5885    | 5885    | 5885      | 5885           | 5885           | 5885              | 5885    | 5885 | 5885    | 5885      | 5885 | 5885      |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pg C2.13 • For stud designations refer Section A1

# Maximum Wall Heights - Non Load Bearing Steel D-Stud™ Walls

**Lined Both Sides** (Includes staggered & twin stud wall systems)

#### Maximum Wall Pressure: 0.35kPa

#### Maximum Stud Centres: 400mm

| Lining Side 1 (no of layers x thickness | s in mm) | 1:   | x13     | 1:   | x13     |      | 1x16    |         | 1>        | (16            |              | 2x13              |         |      | 2x16    |           |      | 4x16      |
|-----------------------------------------|----------|------|---------|------|---------|------|---------|---------|-----------|----------------|--------------|-------------------|---------|------|---------|-----------|------|-----------|
| Lining Side 2 (no of layers x thickness | s in mm) | 1:   | x13     | 1:   | x16     |      | 1x16    |         | 1x16      | + 1x10         |              | 2x13              |         |      | 2x16    |           |      | 4x16      |
|                                         | FRL      | Nil  | -/30/30 | Nil  | -/60/60 | Nil  | -/30/30 | -/60/60 | Nil       | -/90/90        | Nil          | -/60/60           | -/90/90 | Nil  | -/90/90 | -/120/120 | Nil  | -/120/120 |
| Layout                                  | Stud     |      |         |      |         |      |         | Wall He | eights (m | nm) Refer page | C2.13 re sha | ded wall height c | ells    |      |         |           |      |           |
|                                         | 40DS55   | 2199 | 2199    | 2199 | 2199    | 2228 | 2228    | 2228    | 2228      | 2228           | 2228         | 2228              | 2228    | 2228 | 2228    | 2228      | 2228 | 2228      |
|                                         | 40DS60   | 2254 | 2254    | 2254 | 2254    | 2281 | 2281    | 2281    | 2281      | 2281           | 2281         | 2281              | 2281    | 2281 | 2281    | 2281      | 2281 | 2281      |
|                                         | 40DS75   | 2404 | 2404    | 2404 | 2404    | 2425 | 2425    | 2425    | 2425      | 2425           | 2425         | 2425              | 2425    | 2425 | 2425    | 2425      | 2425 | 2425      |
|                                         | 50DS60   | 2610 | 2610    | 2610 | 2610    | 2626 | 2626    | 2626    | 2626      | 2626           | 2626         | 2626              | 2626    | 2626 | 2626    | 2626      | 2626 | 2626      |
|                                         | 50DS75   | 2792 | 2792    | 2792 | 2792    | 2804 | 2804    | 2804    | 2804      | 2804           | 2804         | 2804              | 2804    | 2804 | 2804    | 2804      | 2804 | 2804      |
|                                         | 61DS75   | 3323 | 3323    | 3323 | 3323    | 3347 | 3347    | 3347    | 3347      | 3347           | 3347         | 3347              | 3347    | 3624 | 3624    | 3624      | 3624 | 3624      |
|                                         | 61DS100  | 3626 | 3626    | 3626 | 3626    | 3643 | 3643    | 3643    | 3643      | 3643           | 3643         | 3643              | 3643    | 3864 | 3864    | 3864      | 3864 | 3864      |
| Board to single side of single stud     | 64DS75   | 3410 | 3410    | 3410 | 3410    | 3430 | 3430    | 3430    | 3430      | 3430           | 3430         | 3430              | 3430    | 3676 | 3676    | 3676      | 3676 | 3676      |
| System D1616F illustrated               | 64DS100  | 3818 | 3818    | 3818 | 3818    | 3830 | 3830    | 3830    | 3830      | 3830           | 3830         | 3830              | 3830    | 4015 | 4015    | 4015      | 4015 | 4015      |
|                                         | 64DS120  | 4082 | 4082    | 4082 | 4082    | 4090 | 4090    | 4090    | 4090      | 4090           | 4090         | 4090              | 4090    | 4239 | 4239    | 4239      | 4239 | 4239      |
|                                         | 96DS75   | 4839 | 4839    | 4839 | 4839    | 4884 | 4884    | 4884    | 4884      | 4884           | 4884         | 4884              | 4884    | 4884 | 4884    | 4884      | 4884 | 4884      |
|                                         | 96DS100  | 5376 | 5376    | 5376 | 5376    | 5410 | 5410    | 5410    | 5410      | 5410           | 5410         | 5410              | 5410    | 5410 | 5410    | 5410      | 5410 | 5410      |
|                                         | 96DS120  | 5737 | 5737    | 5737 | 5737    | 5764 | 5764    | 5764    | 5764      | 5764           | 5764         | 5764              | 5764    | 5764 | 5764    | 5764      | 5764 | 5764      |
|                                         | 120DS70  | 6199 | 6199    | 6199 | 6199    | 6226 | 6226    | 6226    | 6226      | 6226           | 6226         | 6226              | 6226    | 6226 | 6226    | 6226      | 6226 | 6226      |
|                                         | 120DS90  | 6702 | 6702    | 6702 | 6702    | 6722 | 6722    | 6722    | 6722      | 6722           | 6722         | 6722              | 6722    | 6722 | 6722    | 6722      | 6722 | 6722      |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 & notes on pg C2.13 • For stud designations refer Section A1

This page left blank intentionally.

# C3 | Timber Stud Charfactor Tables

## **Charfactor Numbers**

- Charfactor numbers apply only to timber stud wall systems listed in System Index Section of this manual
- A Charfactor number is defined as follows:
   A dimensionless factor relating the amount of permissible char area of the studs, when in a timber framed partition under fire test at the time of its structural collapse, for a given height and loading.

# Selecting Studs Using Charfactor Tables

### Non Load Bearing Walls

- First establish the Charfactor number of the non load bearing timber stud partition system. This number is found in the "Fire Resistance" column of the System Index, in the system selection pages of this manual
- Enter the "Non Load Bearing Walls" table from the left at the wall height required
- Move horizontally across the columns till the value shown
  in the body of the table matches or just exceeds the chosen
  system's charfactor. The Stud size of this column is the least
  section that may be used in the given fire conditions but must
  also be checked against other structural requirements
- · Larger sizes can of course be used instead
- Refer also to the following pages for an example of non load bearing stud selection using charfactors.

#### **Load Bearing Walls**

- For load bearing walls first establish the Charfactor Number of the timber partition system as before (see Non Load Bearing Walls)
- You need also to know the height and stress grade of the studs proposed and their imposed axial load
- Select the page with the appropriate 'Load bearing Walls' Charfactor number from those presented (11, 14, 15, 18, 21 or 22)
- Select the appropriate Timber Stress Grade table
- · Enter the table from the left at the wall height required
- Move horizontally across the columns till the value shown in the body of the table matches or just exceeds the chosen system's axial load capacity
- The Stud size of this column is the least section that may be used in the given fire conditions but must also be checked against other structural requirements
- · Larger sizes can, of course, be used instead
- Refer also to the following pages for an example of load bearing stud selection using charfactors.

#### General

- Where a required timber size is not listed, use the next smallest section (in both dimensions) that is listed for selection within the tables. This applies to tables for both load bearing and non load bearing walls
- In instances where a Charfactor number is not represented by a set of tables, make selections using tables for a higher available Charfactor number
- The values shown on the tables for each Charfactor are the maximum load and heights achievable for that stud size
- Where a timber partition system calls for a stud size with a stress grade which is not represented on any of the tables for the Charfactor number, make your selection by using a table for a lower stress grade eg, if F7 stress grade is called for, use a F5 stress grade table.

# » Selecting Studs Using Charfactor Tables

### **Example 1 - Non Load Bearing Walls**

I have a non load bearing wall 4000mm high for which I seek to use a -/60/60 FRL T1616F system (formally TS7 system).

From the System Index I find that this system/FRL has a Charfactor of 11. I know I can use a stud size or height that gives me an equal or greater charfactor. Entering the "Non Load Bearing Walls" table at 4 metres height I move across to the 70x45 column which I find is the smallest size I can use with a Charfactor equal or greater than the Charfactor 11 of the T1616F system. Having checked the stud section for fire service I must now check it against normal structural requirements.

| $\mathbf{C}$          | Desi   | gn Ta  | ables  |        |            |       |       |       | Selector+       |
|-----------------------|--------|--------|--------|--------|------------|-------|-------|-------|-----------------|
| 01                    |        |        |        |        |            |       |       | 0.    |                 |
| Char                  | tact   | ior i  | Nun    | ıbeı   | <b>S</b> - | IIM   | ber   | Stu   | d Non Load Bear |
|                       |        |        | Stu    | d size | mm x ı     | mm)   |       |       |                 |
| Wall<br>Height<br>(m) | 140x45 | 140x35 | 120x45 | 120x35 | 90x45      | 90x35 | 70x45 | 70x35 |                 |
| 3.0                   | 30     | 28     | 30     | 26     | 26         | 20    | 17    | 14    |                 |
| 3.1                   | 30     | 28     | 30     | 26     | 26         | 20    | 17    | 14    |                 |
| 3.2                   | 30     | 28     | 30     | 26     | 25         | 20    | 17    | 13    |                 |
| 3.3                   | 30     | 28     | 30     | 26     | 25         | 20    | 16    | 13    | /               |
| 3.4                   | 30     | 28     | 30     | 26     | 24         | 19    | 16    | 12    |                 |
| 3.5                   | 30     | 28     | 30     | 25     | 24         | 19    | 15    | 12    |                 |
| 3.6                   | 30     | 28     | 30     | 25     | 23         | 18    | 15    | 11    |                 |
| 3.7                   | 30     | 27     | 30     | 25     | 23         | 18    | 14    | 11    |                 |
| 3.8                   | 30     | 27     | 30     | 25     | 22         | 18    | 14    | 10    |                 |
| 3.9                   | 30     | 27     | 30     | 24     | 22         | 17    | 13    | 10    |                 |
| 4.0                   | 30     | 27     | 30     | 24     | 21         | 17    | 12    | 9     |                 |
| 4.1                   | 30     | 26     | 30     | 24     | 21         | 16    | 12    | 9     |                 |
| 4.2                   | 30     | 26     | 30     | 23     | 20         | 16    | 11    | 8     |                 |
| 4.3                   | 30     | 26     | 29     | 23     | 20         | 15    | 11    | 8     |                 |

# » Selecting Studs Using Charfactor Tables

#### **Example 2 - Load Bearing Walls**

I have a load bearing 3 metre high timber framed wall for which I seek to use a 120/120/120 FRL TT3232F system (formally TS22 system). This wall is carrying an imposed load of 20kN on each of the F8 studs.

From the System Index I find that this system has a Charfactor of 14. Entering the left side of the "Load Bearing Walls" Charfactor 14 table at 3 metres height I move right, across to the F8 area and to the column that shows a load capacity equal to or greater than the 20kN load required. Reading up the table I find that a 120x45 stud is the smallest of the F8 stud sizes I can use. Having checked the stud section for fire service I must now check it against normal structural requirements.

**C**3 Charfactors C3.6Load Bearing Walls - Axial Load Capacity in kN/Stud Timber Stress Grade F5 Timber Stress Grade F8 Tim Stud size (mmxmm) Stud size (mmxmm) Wall 140x45 120x35 Height 70x45 90x45 90x45 70x35 70x35 90x35 90x35 (m) 2.0 5.5 18.9 10.3 7.1 24 0 16.1 18 4 12.3 10.3 6.9 3.6 42.8 30.0 331 23.2 13.1 76.4 55.1 2.1 23.6 15.9 18.0 9.9 3.4 42.1 29.5 32.4 22.6 18.1 12.6 9.7 74.8 53.9 12.1 6.6 2.2 23.2 15.6 17.6 11.8 9.6 6.4 3.3 41.4 29.0 31.6 22.1 17.4 9.2 6.4 73.1 52.7 2.3 22.8 17.2 9.2 6.1 4.7 30.8 21.5 **1**1.7 8.7 6.0 71.4 15.3 11.5 3.1 40.6 28.4 16.7 51.4 8.2 24 22 4 27.9 30.0 21.0 11 2 15.0 16.8 11 2 89 59 4 4 2.9 39.8 16.1 5.7 69.7 50.2 2.5 22.0 14.7 16.4 11.0 8.5 5.6 4.2 2.7 39.0 27.3 29.2 20.4 15/4 10.7 7.8 5.4 67.9 48.9 2.6 14.4 10.7 8.2 5.4 3.9 2.6 38.2 28.4 19.9 10.2 7.3 47.6 21.6 16.0 26.8 66.2 2.7 21.1 14.2 15.6 10.4 7.8 5.2 3.7 2.4 37.4 26.2 27.6 14.1 4.8 64.4 46.3 2.8 20.7 13.8 15.1 10.1 7.5 5.0 3.5 2.3 36.6 25.6 26.8 18, 13.5 9.4 6.5 4.5 45.0 62.6 2.9 20.3 14.7 9.8 7.2 4.7 3.3 35.8 25.0 26.0 18.2 12.9 9.0 6.2 4.3 43.8 13.5 60.9 25.3 3.1 19.4 12.9 13.9 9.2 6.6 4.3 2.9 34.1 23.8 17.1 11.8 8.2 5.5 3.8 57.4 41.2 3.2 18.9 12.6 13.5 6.3 4.1 33.2 23.2 23.7 16.5 11.3 3.6 40.0 3.3 18.5 12.3 13.1 8.7 6.0 3.9 2.6 32.4 22.6 23.0 16.0 10.8 7.5 4.9 3.4 54.0 38.8 3.4 18.0 12.0 12.7 5.7 2.4 22.0 22.2 15.5 10.3 7.1 4.7 3.2 52.3 8.4 3.8 31.6 37.6 3.5 17.6 11.7 12.3 8.1 5.5 3.6 2.3 30.7 21.4 21.5 15.0 9.9 6.8 4.4 3.0 50.7 36.4 3.6 17.1 11.4 11.9 7.9 5.2 3.4 22 29.9 20.9 20.8 14 5 94 42 2.8 49.1 35.2 3.7 5.0 3.3 29.1 20.3 20.1 9.0 3.9 2.7 47.5 34.1 16.7 11.1 11.5 7.6 14.0 3.8 16.3 10.8 11.1 7.3 4.8 3.1 28.3 19.7 19.4 13.5 8.6 3.7 2.5 46.0 33.0 3.9 15.8 10.5 10.7 4.5 2.9 27.5 19.2 18.8 13.0 8.2 5.7 3.5 2.4 44.5 32.0 7.1 4.0 15.4 10.2 10.4 6.8 4.3 2.8 26.8 18.6 18 2 12.6 7.9 5 4 3.3 2.3 43.1 30.9 4.1 15.0 9.9 10.0 6.6 4.1 2.7 26.0 18.1 175 12.2 7.5 5.2 3.2 2.1 41.7 29.9 3.0 40.4 29.0 4.2 14.6 9.6 9.7 3.9 17.6 11.7 4.3 14.2 9.3 9.4 3.7 24.5 17.1 16.4 11.3 6.9 4.7 39.1 28.0 2.3 23.8 13.8 10.9 37.8 16.5 15.8

C3.3

# **Charfactor Numbers - Timber Stud Non Load Bearing Walls**

|                       |        |        | Stud   | d size ( | mm x ı | mm)   |       |       |
|-----------------------|--------|--------|--------|----------|--------|-------|-------|-------|
| Wall<br>Height<br>(m) | 140x45 | 140x35 | 120х45 | 120x35   | 90x45  | 90x35 | 70x45 | 70x35 |
| 3.0                   | 30     | 28     | 30     | 26       | 26     | 20    | 17    | 14    |
| 3.1                   | 30     | 28     | 30     | 26       | 26     | 20    | 17    | 14    |
| 3.2                   | 30     | 28     | 30     | 26       | 25     | 20    | 17    | 13    |
| 3.3                   | 30     | 28     | 30     | 26       | 25     | 20    | 16    | 13    |
| 3.4                   | 30     | 28     | 30     | 26       | 24     | 19    | 16    | 12    |
| 3.5                   | 30     | 28     | 30     | 25       | 24     | 19    | 15    | 12    |
| 3.6                   | 30     | 28     | 30     | 25       | 23     | 18    | 15    | 11    |
| 3.7                   | 30     | 27     | 30     | 25       | 23     | 18    | 14    | 11    |
| 3.8                   | 30     | 27     | 30     | 25       | 22     | 18    | 14    | 10    |
| 3.9                   | 30     | 27     | 30     | 24       | 22     | 17    | 13    | 10    |
| 4.0                   | 30     | 27     | 30     | 24       | 21     | 17    | 12    | 9     |
| 4.1                   | 30     | 26     | 30     | 24       | 21     | 16    | 12    | 9     |
| 4.2                   | 30     | 26     | 30     | 23       | 20     | 16    | 11    | 8     |
| 4.3                   | 30     | 26     | 29     | 23       | 20     | 15    | 11    | 8     |
| 4.4                   | 30     | 26     | 29     | 23       | 19     | 15    | 10    | 7     |
| 4.5                   | 30     | 26     | 28     | 22       | 19     | 15    | 10    | 7     |
| 4.6                   | 30     | 25     | 28     | 22       | 18     | 14    | 9     | 6     |
| 4.7                   | 30     | 25     | 28     | 22       | 18     | 14    | 9     | 6     |
| 4.8                   | 30     | 25     | 27     | 21       | 17     | 13    | 8     | 5     |
| 4.9                   | 30     | 25     | 27     | 21       | 17     | 13    | 8     | 5     |
| 5.0                   | 30     | 24     | 27     | 21       | 16     | 12    | 7     | 4     |
| 5.1                   | 30     | 24     | 26     | 21       | 16     | 12    | 6     | 4     |
| 5.2                   | 30     | 24     | 26     | 20       | 15     | 11    | 6     | 3     |
| 5.3                   | 30     | 23     | 25     | 20       | 15     | 11    | 5     | 3     |
| 5.4                   | 30     | 23     | 25     | 19       | 14     | 11    | 5     | 2     |
| 5.5                   | 29     | 23     | 24     | 19       | 14     | 10    | 4     | 2     |
| 5.6                   | 29     | 23     | 24     | 19       | 13     | 10    | 4     | 1     |
| 5.7                   | 28     | 22     | 24     | 18       | 13     | 9     | 3     | 1     |
| 5.8                   | 28     | 22     | 23     | 18       | 12     | 9     | 3     | 0     |
| 5.9                   | 28     | 22     | 23     | 18       | 12     | 8     | 2     | 0     |
| 6.0                   | 27     | 21     | 22     | 17       | 11     | 8     | 2     | 0     |

#### Note:

Where design requirements are for the following sizes: 100x50 - build in this size using 90x45 height/load data 100x38 - build in this size using 90x35 height/load data 75x50 - build in this size using 70x45 height/load data.

# C Design Tables Selector+ PLASTERBOARD SYSTEMS

# Load Bearing Walls - Axial Load Capacity in kN/Stud

#### Timber Stud - Charfactor 11

|             |              | Tin          | nber         | Stre         | ss G         | rade       | F5         |            |              | Tin          | nber         | Stre         | ss G         | rade         | F8           |            |              | Tim          | ber          | Stre         | ss Gr        | ade          | F14          |              |                | Tim          | ber :        | Stres        | ss Gr        | ade          | F22          |              |
|-------------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Wall        |              |              | Stud         |              | (mmx         | mm)        |            |            |              |              |              | d size       | (mmx         | mm)          |              |            |              |              | Stu          | d size       | (mmx         | mm)          |              |              |                |              | Stud         | size         | (mmx         | mm)          |              |              |
| Height (m)  | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35      | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35        | 140x45         | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35        |
| 2.0         | 28.5         | 20.0         | 22.2         | 15.6         | 12.9         | 9.0        | 7.2        | 5.0        | 48.8         | 35.2         | 38.2         | 27.5         | 22.4         | 16.1         | 12.6         | 9.0        | 84.4         | 62.0         | 65.5         | 48.0         | 37.5         | 27.4         | 20.7         | 15.0         | 134.0          | 99.4         | 102.2        | 75.7         | 56.3         | 41.5         | 30.1         | 22.1         |
| 2.1         | 28.1         | 19.7         | 21.8         | 15.2         | 12.5         | 8.7        | 6.9        | 4.8        | 48.0         | 34.6         | 37.4         | 26.9         | 21.6         | 15.5         | 12.0         | 8.5        | 82.7         | 60.7         | 63.6         | 46.6         | 35.8         | 26.1         | 19.4         | 14.1         | 130.4          | 96.7         | 98.5         | 73.0         | 53.2         | 39.2         | 28.0         | 20.6         |
| 2.2<br>2.3  | 27.6<br>27.2 | 19.4<br>19.0 | 21.3<br>20.8 | 14.9<br>14.6 | 12.1<br>11.6 | 8.4<br>8.1 | 6.5<br>6.2 | 4.5<br>4.3 | 47.2<br>46.4 | 34.0<br>33.4 | 36.5<br>35.6 | 26.3<br>25.6 | 20.7<br>19.9 | 14.9<br>14.3 | 11.3<br>10.7 | 8.1<br>7.6 | 80.8<br>79.0 | 59.3<br>58.0 | 61.7<br>59.9 | 45.3<br>43.9 | 34.1<br>32.5 | 24.9         | 18.2<br>17.1 | 13.2<br>12.4 | 126.6<br>122.9 | 93.9<br>91.1 | 94.9<br>91.2 | 70.2<br>67.5 | 50.3<br>47.5 | 37.1<br>35.0 | 26.1<br>24.4 | 19.2<br>17.9 |
| 2.4         | 26.7         | 18.7         | 20.4         | 14.2         | 11.2         | 7.8        | 5.8        | 4.0        | 45.5         | 32.8         | 34.7         | 25.0         | 19.1         | 13.7         | 10.1         | 7.2        | 77.1         | 56.6         | 58.0         | 42.5         | 30.9         | 22.6         | 16.1         | 11.7         | 119.1          | 88.3         | 87.6         | 64.9         | 44.9         | 33.1         | 22.7         | 16.7         |
| 2.5         | 26.2         | 18.4         | 19.9         | 13.9         | 10.7         | 7.5        | 5.5        | 3.8        | 44.6         | 32.1         | 33.8         | 24.3         | 18.3         | 13.1         | 9.6          | 6.8        | 75.2         | 55.1         | 56.1         | 41.1         | 29.4         | 21.5         | 15.1         | 11.0         | 115.4          | 85.5         | 84.1         | 62.2         | 42.4         | 31.3         | 21.2         | 15.6         |
| 2.6         | 25.8         | 18.0         | 19.4         | 13.5         | 10.3         | 7.2        | 5.2        | 3.6        | 43.7         | 31.5         | 32.9         | 23.6         | 17.6         | 12.6         | 9.0          | 6.4        | 73.2         | 53.7         | 54.2         | 39.7         | 28.0         | 20.4         | 14.2         | 10.3         | 111.6          | 82.7         | 80.7         | 59.7         | 40.1         | 29.5         | 19.9         | 14.6         |
| 2.7         | 25.3         | 17.7         | 18.9         | 13.2         | 9.9          | 6.9        | 5.0        | 3.4        | 42.8         | 30.8         | 32.0         | 23.0         | 16.8         | 12.0         | 8.5          | 6.1        | 71.3         | 52.3         | 52.4         | 38.3         | 26.7         | 19.4         | 13.3         | 9.7          | 107.9          | 79.9         | 77.4         | 57.2         | 37.9         | 27.9         | 18.6         | 13.7         |
| 2.8<br>2.9  | 24.8<br>24.3 | 17.3<br>17.0 | 18.4<br>17.9 | 12.8<br>12.5 | 9.5<br>9.1   | 6.6<br>6.3 | 4.7<br>4.4 | 3.2<br>3.0 | 41.9<br>40.9 | 30.1<br>29.4 | 31.1         | 22.3<br>21.7 | 16.1<br>15.4 | 11.5<br>11.0 | 8.1<br>7.6   | 5.7<br>5.4 | 69.4<br>67.4 | 50.8<br>49.4 | 50.6<br>48.8 | 37.0<br>35.7 | 25.4<br>24.1 | 18.5<br>17.6 | 12.6<br>11.8 | 9.1<br>8.6   | 104.2<br>100.6 | 77.2<br>74.5 | 74.2<br>71.0 | 54.8<br>52.5 | 35.8<br>33.9 | 26.4<br>25.0 | 17.5<br>16.4 | 12.8<br>12.1 |
| 3.0         | 23.7         | 16.6         | 17.4         | 12.1         | 8.7          | 6.1        | 4.2        | 2.9        | 40.0         | 28.7         | 29.3         | 21.0         | 14.7         | 10.5         | 7.2          | 5.1        | 65.5         | 48.0         | 47.0         | 34.4         | 23.0         | 16.7         | 11.1         | 8.1          | 97.1           | 71.9         | 68.1         | 50.3         | 32.1         | 23.7         | 15.4         | 11.3         |
| 3.1         | 23.2         | 16.2         | 16.9         | 11.8         | 8.4          | 5.8        | 4.0        | 2.7        | 39.0         | 28.1         | 28.4         | 20.4         | 14.1         | 10.1         | 6.8          | 4.9        | 63.6         | 46.6         | 45.3         | 33.1         | 21.8         | 15.9         | 10.5         | 7.6          | 93.7           | 69.3         | 65.2         | 48.2         | 30.4         | 22.4         | 14.5         | 10.7         |
| 3.2         | 22.7         | 15.8         | 16.4         | 11.4         | 8.0          | 5.5        | 3.7        | 2.6        | 38.1         | 27.4         | 27.5         | 19.7         | 13.5         | 9.6          | 6.5          | 4.6        | 61.7         | 45.2         | 43.7         | 31.9         | 20.8         | 15.2         | 9.9          | 7.2          | 90.3           | 66.8         | 62.4         | 46.1         | 28.8         | 21.3         | 13.7         | 10.0         |
| 3.3         | 22.2         | 15.5         | 16.0         | 11.1         | 7.7          | 5.3        | 3.5<br>3.3 | 2.4<br>2.3 | 37.2         | 26.7         | 26.7         | 19.1         | 12.9         | 9.2          | 6.1          | 4.3<br>4.1 | 59.8         | 43.8         | 42.1         | 30.7         | 19.8         | 14.4         | 9.4          | 6.8          | 87.0           | 64.4         | 59.8         | 44.2         | 27.4         | 20.2         | 12.9         | 9.5          |
| 3.4         | 21.7         | 15.1<br>14.7 | 15.5<br>15.0 | 10.8         | 7.3          | 5.1<br>4.8 | 3.1        | 2.3        | 36.2         | 26.0         | 25.8         | 18.5<br>17.9 | 12.3         | 8.8          | 5.8          | 3.9        | 58.0<br>56.2 | 42.5<br>41.1 | 40.5<br>39.0 | 29.6<br>28.5 | 18.9<br>18.0 | 13.8         | 8.9          | 6.4          | 83.9           | 62.1<br>59.8 | 57.3<br>54.9 | 42.3         | 26.0         | 19.2<br>18.2 | 12.2         | 8.9<br>8.5   |
| 3.6         | 20.6         | 14.4         | 14.5         | 10.1         | 6.7          | 4.6        | 3.0        | 2.0        | 34.4         | 24.6         | 24.2         | 17.3         | 11.3         | 8.0          | 5.2          | 3.7        | 54.4         | 39.8         | 37.5         | 27.4         | 17.2         | 12.5         | 7.9          | 5.8          | 77.9           | 57.6         | 52.6         | 38.9         | 23.5         | 17.3         | 10.9         | 8.0          |
| 3.7         | 20.1         | 14.0         | 14.1         | 9.8          | 6.4          | 4.4        | 2.8        |            | 33.4         | 24.0         | 23.4         | 16.7         | 10.8         | 7.7          | 4.9          | 3.5        | 52.7         | 38.6         | 36.1         | 26.4         | 16.4         | 11.9         | 7.5          | 5.5          | 75.0           | 55.5         | 50.4         | 37.3         | 22.3         | 16.5         | 10.3         | 7.6          |
| 3.8         | 19.6         | 13.6         | 13.6         | 9.5          | 6.1          | 4.2        | 2.6        |            | 32.5         | 23.3         | 22.6         | 16.2         | 10.3         | 7.4          | 4.7          | 3.3        | 51.0         | 37.3         | 34.8         | 25.4         | 15.6         | 11.4         | 7.1          | 5.2          | 72.3           | 53.5         | 48.3         | 35.7         |              | 15.7         | 9.7          | 7.2          |
| 3.9         | 19.1         | 13.3         | 13.2         | 9.1          | 5.9          | 4.0<br>3.8 | 2.5        |            | 31.6         | 22.7         | 21.9         | 15.6         | 9.9          | 7.0          | 4.4          | 3.1        | 49.4         | 36.1         | 33.5         | 24.5         | 14.9         | 10.9         | 6.8          | 4.9          | 69.7           | 51.5         | 46.4         | 34.3         | 20.3         | 14.9         | 9.2          | 6.8          |
| 4.0<br>4.1  | 18.6<br>18.1 | 12.9<br>12.6 | 12.8<br>12.4 | 8.5          | 5.0<br>5.4   | 3.8<br>3.7 | 2.3        |            | 30.8<br>29.9 | 22.0<br>21.4 | 21.1         | 15.1<br>14.6 | 9.4<br>9.0   | 6.7<br>6.4   | 4.2<br>4.0   | 3.0<br>2.8 | 47.8<br>46.3 | 35.0<br>33.8 | 32.3<br>31.1 | 23.6<br>22.7 | 14.2<br>13.6 | 10.4<br>9.9  | 6.1          | 4.7<br>4.4   | 67.1<br>64.7   | 49.7<br>47.9 | 44.5<br>42.7 | 32.9<br>31.6 | 19.3<br>18.4 | 14.3<br>13.6 | 8.8<br>8.3   | 6.5<br>6.1   |
| 4.2         | 17.6         | 12.2         | 12.0         | 8.3          | 5.1          | 3.5        | 2.1        |            | 29.1         | 20.8         | 19.7         | 14.1         | 8.7          | 6.1          | 3.8          | 2.7        | 44.8         | 32.8         | 29.9         | 21.9         | 13.0         | 9.5          | 5.8          | 4.2          | 62.4           | 46.2         | 41.0         | 30.3         | 17.6         | 13.0         | 7.9          | 5.8          |
| 4.3         | 17.1         | 11.9         | 11.6         | 8.0          | 4.9          | 3.3        |            |            | 28.2         | 20.2         | 19.1         | 13.6         | 8.3          | 5.9          | 3.6          | 2.5        | 43.3         | 31.7         | 28.8         | 21.0         | 12.4         | 9.0          | 5.5          | 4.0          | 60.1           | 44.5         | 39.4         | 29.1         | 16.8         | 12.4         | 7.5          | 5.5          |
| 4.4         | 16.7         | 11.5         | 11.2         | 7.7          | 4.7          | 3.2        |            |            | 27.4         | 19.6         | 18.4         | 13.2         | 7.9          | 5.6          | 3.4          | 2.4        | 41.9         | 30.7         | 27.8         | 20.3         | 11.9         | 8.7          | 5.2          | 3.8          | 58.0           | 42.9         | 37.9         | 28.0         | 16.1         | 11.9         | 7.2          | 5.3          |
| 4.5         | 16.2         | 11.2         | 10.8         | 7.4          | 4.5          | 3.0        |            |            | 26.6         | 19.1         | 17.8         | 12.7         | 7.6          | 5.4          | 3.2          | 2.3        | 40.6         | 29.7         | 26.8         | 19.5         | 11.4         | 8.3          | 5.0          | 3.6          | 55.9           | 41.4         | 36.4         | 26.9         | 15.4         | 11.3         | 6.8          | 5.0          |
| 4.6<br>4.7  | 15.7<br>15.3 | 10.9<br>10.6 | 10.4<br>10.1 | 7.2<br>6.9   | 4.2<br>4.1   | 2.9<br>2.7 |            |            | 25.9<br>25.1 | 18.5<br>18.0 | 17.2<br>16.6 | 12.3<br>11.9 | 7.3<br>7.0   | 5.1<br>4.9   | 3.0<br>2.9   | 2.1        | 39.3<br>38.0 | 28.7<br>27.8 | 25.8<br>24.9 | 18.8<br>18.1 | 10.9<br>10.4 | 7.9<br>7.6   | 4.7<br>4.5   | 3.4          | 54.0<br>52.1   | 39.9<br>38.5 | 35.0<br>33.7 | 25.9<br>24.9 | 14.7<br>14.1 | 10.8<br>10.4 | 6.5<br>6.2   | 4.8<br>4.5   |
| 4.8         | 14.8         | 10.0         | 9.7          | 6.7          | 3.9          | 2.6        |            |            | 24.4         | 17.4         | 16.1         | 11.4         | 6.7          | 4.7          | 2.7          | 2.0        | 36.8         | 26.9         | 24.7         | 17.5         | 10.4         | 7.3          | 4.3          | 3.1          | 50.3           | 37.2         | 32.4         | 24.7         | 13.5         | 9.9          | 5.9          | 4.3          |
| 4.9         | 14.4         | 9.9          | 9.4          | 6.4          | 3.7          | 2.5        |            |            | 23.7         | 16.9         | 15.5         | 11.1         | 6.4          | 4.5          | 2.6          |            | 35.6         | 26.0         | 23.1         | 16.9         | 9.6          | 7.0          | 4.1          | 2.9          | 48.6           | 35.9         | 31.2         | 23.1         | 12.9         | 9.5          | 5.6          | 4.1          |
| 5.0         | 14.0         | 9.6          | 9.1          | 6.2          | 3.5          | 2.4        |            |            | 23.0         | 16.4         | 15.0         | 10.7         | 6.1          | 4.3          | 2.4          |            | 34.5         | 25.2         | 22.3         | 16.3         | 9.2          | 6.7          | 3.9          | 2.8          | 46.9           | 34.7         | 30.1         | 22.2         | 12.4         | 9.1          | 5.4          | 3.9          |
| 5.1         | 13.6         | 9.4          | 8.7          | 6.0          | 3.3          | 2.2        |            |            | 22.3         | 15.9         | 14.5         | 10.3         | 5.8          | 4.1          | 2.3          |            | 33.4         | 24.4         | 21.5         | 15.7         | 8.8          | 6.4          | 3.7          | 2.7          | 45.3           | 33.5         | 29.0         | 21.4         | 11.9         | 8.8          | 5.1          | 3.8          |
| 5.2<br>5.3  | 13.2<br>12.8 | 9.1<br>8.8   | 8.4<br>8.1   | 5.8<br>5.6   | 3.2          | 2.1        |            |            | 21.6<br>21.0 | 15.4<br>15.0 | 14.0<br>13.5 | 10.0<br>9.6  | 5.6<br>5.4   | 3.9<br>3.8   | 2.2<br>2.1   |            | 32.3<br>31.3 | 23.6<br>22.9 | 20.8         | 15.1<br>14.6 | 8.4<br>8.1   | 6.1<br>5.9   | 3.5<br>3.3   | 2.5<br>2.4   | 43.8<br>42.3   | 32.4<br>31.3 | 27.9<br>26.9 | 20.6<br>19.9 | 11.4<br>10.9 | 8.4<br>8.1   | 4.9<br>4.7   | 3.6<br>3.4   |
| 5.4         | 12.6         | 8.5          | 7.9          | 5.3          | 2.9          | 2.0        |            |            | 20.4         | 14.5         | 13.1         | 9.0          | 5.4          | 3.6          | Z. I         |            | 30.3         | 22.9         | 19.4         | 14.0         | 6.1<br>7.8   | 5.6          | 3.2          | 2.4          | 42.3           | 30.3         | 26.9         | 19.9         | 10.9         | 0.1<br>7.7   | 4.7          | 3.3          |
| 5.5         | 12.0         | 8.3          | 7.6          | 5.2          | 2.7          |            |            |            | 19.8         | 14.1         | 12.6         | 9.0          | 4.9          | 3.5          |              |            | 29.4         | 21.4         | 18.7         | 13.6         | 7.5          | 5.4          | 3.0          | 2.2          | 39.6           | 29.3         | 25.1         | 18.5         | 10.1         | 7.4          | 4.2          | 3.1          |
| 5.6         | 11.7         | 8.0          | 7.3          | 5.0          | 2.6          |            |            |            | 19.2         | 13.7         | 12.2         | 8.7          | 4.7          | 3.3          |              |            | 28.5         | 20.8         | 18.0         | 13.1         | 7.2          | 5.2          | 2.9          | 2.1          | 38.3           | 28.3         | 24.2         | 17.9         | 9.7          | 7.1          | 4.1          | 3.0          |
| 5.7         | 11.3         | 7.7          | 7.0          | 4.8          | 2.5          |            |            |            | 18.6         | 13.2         | 11.8         | 8.4          | 4.5          | 3.2          |              |            | 27.6         | 20.1         | 17.4         | 12.7         | 6.9          | 5.0          | 2.7          |              | 37.1           | 27.4         | 23.4         | 17.2         | 9.3          | 6.9          | 3.9          | 2.8          |
| 5.8         | 11.0         | 7.5          | 6.8          | 4.6          | 2.3          |            |            |            | 18.1         | 12.9         | 11.4         | 8.1          | 4.3          | 3.0          |              |            | 26.7         | 19.5         | 16.8         | 12.3         | 6.6          | 4.8          | 2.6          |              | 35.9           | 26.5         | 22.6         | 16.7         | 9.0          | 6.6          | 3.7          | 2.7          |
| 5.9<br>6.0  | 10.6<br>10.3 | 7.3<br>7.0   | 6.5<br>6.3   | 4.4<br>4.2   | 2.2<br>2.1   |            |            |            | 17.5<br>17.0 | 12.5<br>12.1 | 11.0<br>10.6 | 7.8<br>7.5   | 4.1<br>3.9   | 2.9<br>2.7   |              |            | 25.9<br>25.1 | 18.9<br>18.3 | 16.3<br>15.7 | 11.9<br>11.5 | 6.3<br>6.1   | 4.6<br>4.4   | 2.5<br>2.3   |              | 34.7<br>33.6   | 25.7<br>24.9 | 21.8<br>21.1 | 16.1<br>15.5 | 8.6<br>8.3   | 6.3<br>6.1   | 3.5<br>3.4   | 2.6<br>2.5   |
| Those table |              |              |              |              |              |            |            |            |              |              |              | 7.5          | J.7          | 2.1          |              |            | 20.1         |              |              |              |              |              |              | o followin   |                |              |              |              |              |              |              | 2.0          |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

Note: Where design requirements are for the following sizes:- 100x50 - build in this size using 90x45 height / load data; 100x38 - build in this size using 90x35 height / load data; 75x50 - build in this size using 70x45 height / load data.

#### C Design Tables

# Selector+

# PLASTERBOARD SYSTEMS

# Load Bearing Walls - Axial Load Capacity in kN/Stud

#### Timber Stud - Charfactor 14

|             |              | Tir          | nber         | Stre         | ess G      | rade       | F5         |            |              | Tin          | nber         | Stre         | ss G         | rade         | F8         |            |              | Tim          | ber          | Stres        | ss Gr        | ade          | F14          |             |                | Tim          | ber :        | Stres        | ss Gr        | rade         | F22          |              |
|-------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Wall        |              |              | Stud         | size         | (mmx       | mm)        |            |            |              |              | Stu          | d size       | (mmx         | mm)          |            |            |              |              | Stu          | d size       | (mmx         | mm)          |              |             |                |              | Stud         | size         | (mmx         | mm)          |              |              |
| Height (m)  | 140x45       | 140x35       | 120x45       | 120x35       | 90x45      | 90x35      | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35       | 140x45         | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35        |
| 2.0         | 24.0         | 16.1         | 18.4         | 12.3         | 10.3       | 6.9        | 5.5        | 3.6        | 42.8         | 30.0         | 33.1         | 23.2         | 18.9         | 13.1         | 10.3       | 7.1        | 76.4         | 55.1         | 58.7         | 42.3         | 32.9         | 23.6         | 17.7         | 12.6        | 123.7          | 90.5         | 93.6         | 68.4         | 50.7         | 36.9         | 26.7         | 19.3         |
| 2.1         | 23.6         | 15.9         | 18.0         | 12.1         | 9.9        | 6.6        | 5.2        | 3.4        | 42.1         | 29.5         | 32.4         | 22.6         | 18.1         | 12.6         | 9.7        | 6.7        | 74.8         | 53.9         | 57.0         | 41.0         | 31.4         | 22.5         | 16.6         | 11.9        | 120.3          | 88.0         | 90.2         | 65.9         | 47.9         | 34.9         | 24.8         | 18.0         |
| 2.2         | 23.2         | 15.6         | 17.6         | 11.8         | 9.6        | 6.4        | 4.9        | 3.3        | 41.4         | 29.0         | 31.6         | 22.1         | 17.4         | 12.1         | 9.2        | 6.4        | 73.1         | 52.7         | 55.3         | 39.8         | 29.9         | 21.4         | 15.6         | 11.1        | 116.8          | 85.4         | 86.8         | 63.4         | 45.3         | 32.9         | 23.1         | 16.8         |
| 2.3<br>2.4  | 22.8<br>22.4 | 15.3<br>15.0 | 17.2<br>16.8 | 11.5<br>11.2 | 9.2<br>8.9 | 6.1<br>5.9 | 4.7<br>4.4 | 3.1<br>2.9 | 40.6<br>39.8 | 28.4<br>27.9 | 30.8         | 21.5<br>21.0 | 16.7<br>16.1 | 11.7<br>11.2 | 8.7<br>8.2 | 6.0<br>5.7 | 71.4<br>69.7 | 51.4<br>50.2 | 53.6<br>51.9 | 38.6<br>37.3 | 28.5<br>27.1 | 20.4<br>19.4 | 14.6<br>13.8 | 10.5<br>9.8 | 113.3<br>109.8 | 82.9<br>80.3 | 83.5<br>80.2 | 60.9<br>58.5 | 42.8<br>40.4 | 31.1<br>29.4 | 21.6<br>20.1 | 15.6<br>14.6 |
| 2.5         | 22.0         | 14.7         | 16.4         | 11.0         | 8.5        | 5.6        | 4.2        | 2.7        | 39.0         | 27.3         | 29.2         | 20.4         | 15.4         | 10.7         | 7.8        | 5.4        | 67.9         | 48.9         | 50.2         | 36.1         | 25.8         | 18.5         | 12.9         | 9.2         | 106.3          | 77.7         | 77.0         | 56.2         | 38.2         | 27.8         | 18.8         | 13.6         |
| 2.6         | 21.6         | 14.4         | 16.0         | 10.7         | 8.2        | 5.4        | 3.9        | 2.6        | 38.2         | 26.8         | 28.4         | 19.9         | 14.7         | 10.2         | 7.3        | 5.1        | 66.2         | 47.6         | 48.5         | 34.9         | 24.6         | 17.6         | 12.1         | 8.7         | 102.9          | 75.2         | 73.9         | 53.9         | 36.1         | 26.2         | 17.6         | 12.8         |
| 2.7         | 21.1         | 14.2         | 15.6         | 10.4         | 7.8        | 5.2        | 3.7        | 2.4        | 37.4         | 26.2         | 27.6         | 19.3         | 14.1         | 9.8          | 6.9        | 4.8        | 64.4         | 46.3         | 46.9         | 33.7         | 23.4         | 16.7         | 11.4         | 8.1         | 99.4           | 72.6         | 70.8         | 51.6         | 34.1         | 24.8         | 16.5         | 12.0         |
| 2.8         | 20.7         | 13.8         | 15.1         | 10.1         | 7.5        | 5.0        | 3.5        | 2.3        | 36.6         | 25.6         | 26.8         | 18.7         | 13.5         | 9.4          | 6.5        | 4.5        | 62.6         | 45.0         | 45.2         | 32.5         | 22.2         | 15.9         | 10.8         | 7.7         | 96.1           | 70.2         | 67.9         | 49.5         | 32.3         | 23.5         | 15.5         | 11.2         |
| 2.9         | 20.3         | 13.5         | 14.7         | 9.8          | 7.2        | 4.7        | 3.3        | 2.2        | 35.8         | 25.0         | 26.0         | 18.2         | 12.9         | 9.0          | 6.2        | 4.3        | 60.9         | 43.8         | 43.6         | 31.3         | 21.2         | 15.1         | 10.1         | 7.2         | 92.7           | 67.7         | 65.0         | 47.4         | 30.6         | 22.2         | 14.5         | 10.5<br>9.9  |
| 3.0<br>3.1  | 19.8<br>19.4 | 13.2<br>12.9 | 14.3<br>13.9 | 9.5<br>9.2   | 6.9<br>6.6 | 4.5<br>4.3 | 2.9        | 2.0        | 34.9<br>34.1 | 24.4         | 25.3<br>24.5 | 17.6<br>17.1 | 12.4<br>11.8 | 8.6<br>8.2   | 5.8<br>5.5 | 4.0<br>3.8 | 59.1<br>57.4 | 42.5<br>41.2 | 42.1<br>40.5 | 30.2<br>29.1 | 20.1<br>19.2 | 14.4<br>13.7 | 9.5<br>9.0   | 6.8<br>6.4  | 89.5<br>86.3   | 65.3<br>63.0 | 62.3<br>59.7 | 45.4<br>43.5 | 28.9<br>27.4 | 21.0<br>19.9 | 13.6<br>12.8 | 9.9          |
| 3.2         | 18.9         | 12.6         | 13.5         | 8.9          | 6.3        | 4.1        | 2.8        |            | 33.2         | 23.2         | 23.7         | 16.5         | 11.3         | 7.8          | 5.2        | 3.6        | 55.7         | 40.0         | 39.1         | 28.0         | 18.2         | 13.7         | 8.5          | 6.1         | 83.2           | 60.7         | 57.1         | 41.7         | 26.0         | 18.9         | 12.0         | 8.8          |
| 3.3         | 18.5         | 12.3         | 13.1         | 8.7          | 6.0        | 3.9        | 2.6        |            | 32.4         | 22.6         | 23.0         | 16.0         | 10.8         | 7.5          | 4.9        | 3.4        | 54.0         | 38.8         | 37.6         | 27.0         | 17.4         | 12.4         | 8.0          | 5.7         | 80.2           | 58.5         | 54.7         | 39.9         | 24.7         | 17.9         | 11.4         | 8.3          |
| 3.4         | 18.0         | 12.0         | 12.7         | 8.4          | 5.7        | 3.8        | 2.4        |            | 31.6         | 22.0         | 22.2         | 15.5         | 10.3         | 7.1          | 4.7        | 3.2        | 52.3         | 37.6         | 36.2         | 26.0         | 16.5         | 11.8         | 7.6          | 5.4         | 77.3           | 56.4         | 52.4         | 38.2         | 23.4         | 17.0         | 10.8         | 7.8          |
| 3.5         | 17.6         | 11.7         | 12.3         | 8.1          | 5.5        | 3.6        | 2.3        |            | 30.7         | 21.4         | 21.5         | 15.0         | 9.9          | 6.8          | 4.4        | 3.0        | 50.7         | 36.4         | 34.9         | 25.0         | 15.8         | 11.3         | 7.2          | 5.1         | 74.5           | 54.4         | 50.3         | 36.6         | 22.3         | 16.2         | 10.2         | 7.4          |
| 3.6         | 17.1         | 11.4         | 11.9         | 7.9          | 5.2        | 3.4        | 2.2        |            | 29.9         | 20.9         | 20.8         | 14.5         | 9.4          | 6.5          | 4.2        | 2.8        | 49.1         | 35.2         | 33.6         | 24.1         | 15.0         | 10.7         | 6.8          | 4.8         | 71.8           | 52.4         | 48.2         | 35.1         | 21.2         | 15.4         | 9.6          | 7.0          |
| 3.7<br>3.8  | 16.7<br>16.3 | 11.1<br>10.8 | 11.5<br>11.1 | 7.6<br>7.3   | 5.0<br>4.8 | 3.3<br>3.1 | 2.0        |            | 29.1<br>28.3 | 20.3<br>19.7 | 20.1<br>19.4 | 14.0<br>13.5 | 9.0<br>8.6   | 6.2<br>5.9   | 3.9<br>3.7 | 2.7<br>2.5 | 47.5<br>46.0 | 34.1<br>33.0 | 32.3<br>31.1 | 23.2<br>22.3 | 14.3<br>13.7 | 10.2<br>9.8  | 6.4<br>6.1   | 4.6<br>4.3  | 69.2<br>66.6   | 50.5<br>48.6 | 46.2<br>44.3 | 33.6<br>32.3 | 20.1<br>19.2 | 14.6<br>13.9 | 9.1<br>8.6   | 6.6<br>6.2   |
| 3.9         | 15.8         | 10.5         | 10.7         | 7.3          | 4.5        | 2.9        |            |            | 27.5         | 19.2         | 18.8         | 13.0         | 8.2          | 5.7          | 3.5        | 2.4        | 44.5         | 32.0         | 30.0         | 21.5         | 13.7         | 9.3          | 5.8          | 4.1         | 64.2           | 46.8         | 42.5         | 31.0         | 18.3         | 13.3         | 8.2          | 5.9          |
| 4.0         | 15.4         | 10.2         | 10.4         | 6.8          | 4.3        | 2.8        |            |            | 26.8         | 18.6         | 18.2         | 12.6         | 7.9          | 5.4          | 3.3        | 2.3        | 43.1         | 30.9         | 28.8         | 20.7         | 12.5         | 8.9          | 5.5          | 3.9         | 61.9           | 45.1         | 40.8         | 29.7         | 17.4         | 12.7         | 7.7          | 5.6          |
| 4.1         | 15.0         | 9.9          | 10.0         | 6.6          | 4.1        | 2.7        |            |            | 26.0         | 18.1         | 17.5         | 12.2         | 7.5          | 5.2          | 3.2        | 2.1        | 41.7         | 29.9         | 27.8         | 19.9         | 11.9         | 8.5          | 5.2          | 3.7         | 59.6           | 43.5         | 39.1         | 28.5         | 16.6         | 12.1         | 7.4          | 5.3          |
| 4.2         | 14.6         | 9.6          | 9.7          | 6.4          | 3.9        | 2.5        |            |            | 25.3         | 17.6         | 16.9         | 11.7         | 7.2          | 4.9          | 3.0        | 2.0        | 40.4         | 29.0         | 26.8         | 19.2         | 11.4         | 8.1          | 4.9          | 3.5         | 57.5           | 41.9         | 37.6         | 27.4         | 15.9         | 11.5         | 7.0          | 5.1          |
| 4.3         | 14.2         | 9.3          | 9.4          | 6.1          | 3.7        | 2.4        |            |            | 24.5         | 17.1         | 16.4         | 11.3         | 6.9          | 4.7          | 2.8        |            | 39.1         | 28.0         | 25.8         | 18.4         | 10.9         | 7.8          | 4.7          | 3.3         | 55.4           | 40.4         | 36.1         | 26.3         | 15.2         | 11.0         | 6.6          | 4.8          |
| 4.4         | 13.8         | 9.1          | 9.0          | 5.9          | 3.6        | 2.3        |            |            | 23.8         | 16.5<br>16.1 | 15.8<br>15.3 | 10.9         | 6.6          | 4.5          | 2.7        |            | 37.8         | 27.1         | 24.8         | 17.8<br>17.1 | 9.9          | 7.4          | 4.4          | 3.1         | 53.5<br>51.6   | 39.0         | 34.7         | 25.3         | 14.5         | 10.5<br>10.1 | 6.3          | 4.6          |
| 4.6         | 13.4         | 8.5          | 8.4          | 5.5          | 3.4        | 2.0        |            |            | 22.5         | 15.6         | 14.7         | 10.0         | 6.0          | 4.1          | 2.4        |            | 35.4         | 25.4         | 23.7         | 16.5         | 9.5          | 6.8          | 4.0          | 2.8         | 49.8           | 36.3         | 32.1         | 23.4         | 13.2         | 9.6          | 5.7          | 4.1          |
| 4.7         | 12.6         | 8.3          | 8.1          | 5.3          | 3.1        | 2.0        |            |            | 21.8         | 15.1         | 14.2         | 9.8          | 5.7          | 3.9          | 2.2        |            | 34.3         | 24.6         | 22.2         | 15.9         | 9.1          | 6.5          | 3.8          | 2.7         | 48.0           | 35.0         | 30.9         | 22.5         | 12.7         | 9.2          | 5.4          | 3.9          |
| 4.8         | 12.2         | 8.0          | 7.8          | 5.1          | 2.9        |            |            |            | 21.2         | 14.7         | 13.7         | 9.5          | 5.5          | 3.7          | 2.1        |            | 33.2         | 23.8         | 21.4         | 15.3         | 8.7          | 6.2          | 3.6          | 2.5         | 46.4           | 33.8         | 29.7         | 21.6         | 12.1         | 8.8          | 5.2          | 3.7          |
| 4.9         | 11.8         | 7.8          | 7.5          | 4.9          | 2.8        |            |            |            | 20.5         | 14.2         | 13.3         | 9.2          | 5.3          | 3.6          |            |            | 32.1         | 23.0         | 20.7         | 14.8         | 8.3          | 5.9          | 3.4          | 2.4         | 44.8           | 32.6         | 28.6         | 20.8         | 11.6         | 8.4          | 4.9          | 3.6          |
| 5.0         | 11.5         | 7.5          | 7.3          | 4.7          | 2.6        |            |            |            | 19.9         | 13.8         | 12.8         | 8.8          | 5.0          | 3.4          |            |            | 31.1         | 22.2         | 19.9         | 14.2         | 8.0          | 5.7          | 3.2          | 2.3         | 43.2           | 31.5         | 27.5         | 20.0         | 11.1         | 8.1          | 4.7          | 3.4          |
| 5.1<br>5.2  | 11.1<br>10.8 | 7.3<br>7.0   | 7.0<br>6.7   | 4.5<br>4.3   | 2.5<br>2.3 |            |            |            | 19.3<br>18.7 | 13.4<br>13.0 | 12.4<br>11.9 | 8.5<br>8.2   | 4.8<br>4.6   | 3.3<br>3.1   |            |            | 30.1<br>29.1 | 21.5<br>20.8 | 19.2<br>18.5 | 13.7<br>13.2 | 7.7<br>7.3   | 5.4<br>5.2   | 3.1<br>2.9   | 2.2<br>2.1  | 41.8<br>40.4   | 30.5<br>29.4 | 26.5<br>25.6 | 19.3<br>18.6 | 10.7<br>10.2 | 7.8<br>7.4   | 4.5<br>4.3   | 3.2<br>3.1   |
| 5.3         | 10.6         | 6.8          | 6.5          | 4.3          | 2.3        |            |            |            | 18.2         | 12.6         | 11.5         | 0.2<br>7.9   | 4.0          | 3.0          |            |            | 28.2         | 20.6         | 17.9         | 12.8         | 7.3<br>7.0   | 5.0          | 2.9          | ۷.۱         | 39.0           | 28.4         | 24.6         | 17.9         | 9.8          | 7.4<br>7.1   | 4.3          | 2.9          |
| 5.4         | 10.3         | 6.6          | 6.3          | 4.0          | 2.1        |            |            |            | 17.6         | 12.2         | 11.1         | 7.7          | 4.2          | 2.8          |            |            | 27.3         | 19.5         | 17.3         | 12.3         | 6.7          | 4.8          | 2.6          |             | 37.7           | 27.5         | 23.8         | 17.3         | 9.4          | 6.8          | 3.9          | 2.8          |
| 5.5         | 9.8          | 6.4          | 6.0          | 3.8          |            |            |            |            | 17.1         | 11.8         | 10.8         | 7.4          | 4.0          | 2.7          |            |            | 26.4         | 18.9         | 16.7         | 11.9         | 6.5          | 4.6          | 2.5          |             | 36.5           | 26.6         | 22.9         | 16.7         | 9.1          | 6.6          | 3.7          | 2.7          |
| 5.6         | 9.5          | 6.1          | 5.8          | 3.7          |            |            |            |            | 16.6         | 11.4         | 10.4         | 7.1          | 3.8          | 2.6          |            |            | 25.6         | 18.3         | 16.1         | 11.5         | 6.2          | 4.4          | 2.4          |             | 35.3           | 25.7         | 22.1         | 16.1         | 8.7          | 6.3          | 3.5          | 2.5          |
| 5.7         | 9.2          | 5.9          | 5.6          | 3.5          |            |            |            |            | 16.1         | 11.1         | 10.0         | 6.9          | 3.6          | 2.4          |            |            | 24.8         | 17.7         | 15.5         | 11.1         | 5.9          | 4.2          | 2.3          |             | 34.2           | 24.9         | 21.4         | 15.5         | 8.3          | 6.0          | 3.4          | 2.4          |
| 5.8         | 8.9          | 5.7<br>5.5   | 5.3<br>5.1   | 3.4          |            |            |            |            | 15.6         | 10.7         | 9.7          | 6.6          | 3.5          | 2.3          |            |            | 24.0         | 17.2         | 15.0         | 10.7         | 5.7          | 4.0          | 2.1          |             | 33.1           | 24.1         | 20.6         | 15.0         | 8.0          | 5.8          | 3.2          | 2.3          |
| 5.9<br>6.0  | 8.6<br>8.3   | 5.5          | 5.1<br>4.9   | 3.2<br>3.1   |            |            |            |            | 15.1<br>14.7 | 10.4<br>10.1 | 9.3<br>9.0   | 6.4<br>6.2   | 3.3          | 2.2          |            |            | 23.3<br>22.6 | 16.7<br>16.1 | 14.5<br>14.0 | 10.3<br>10.0 | 5.5<br>5.2   | 3.9<br>3.7   | 2.0          |             | 32.0<br>31.0   | 23.3 22.6    | 19.9<br>19.3 | 14.5<br>14.0 | 7.7<br>7.4   | 5.6<br>5.4   | 3.1<br>2.9   | 2.2          |
| These table |              |              |              |              | with Sec   | tions AF   | 5 A6 & A   | A8 and no  |              |              |              | 0.2          | J.Z          | ۷.۱          |            |            | 22.0         |              |              |              |              |              | re for th    | e followir  | an sizes :- '  |              |              |              |              |              |              |              |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

Note: Where design requirements are for the following sizes:- 100x50 - build in this size using 90x45 height / load data; 100x38 - build in this size using 90x35 height / load data; 75x50 - build in this size using 70x45 height / load data.

# **Selector+** PLASTERBOARD SYSTEMS

# Load Bearing Walls - Axial Load Capacity in kN/Stud

#### Timber Stud - Charfactor 15

|            |              | Tir          | nber         | Stre         | ss G       | irade      | F5         |            |              | Tir          | nber         | Stre         | ss G         | rade         | F8         |            |              | Tim          | ber          | Stre         | ss Gr        | ade          | F14          |             |                | Tim          | ber           | Stres        | ss Gr        | rade         | F22          |              |
|------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|----------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Wall       |              |              | Stu          | d size       | (mmx       | mm)        |            |            |              |              | Stu          | d size       | (mmx         | mm)          |            |            |              |              | Stu          | d size       | (mmx         | mm)          |              |             |                |              | Stu           | d size       | (mmx         | mm)          |              |              |
| Height (m) | 140x45       | 140x35       | 120x45       | 120x35       | 90x45      | 90x35      | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35       | 140x45         | 140x35       | 120x45        | 120x35       | 90x45        | 90x35        | 70x45        | 70x35        |
| 2.0        | 22.6         | 14.9         | 17.2         | 11.4         | 9.5        | 6.3        | 5.0        | 3.2        | 41.0         | 28.4         | 31.5         | 21.9         | 17.8         | 12.3         | 9.6        | 6.6        | 73.9         | 52.9         | 56.6         | 40.4         | 31.4         | 22.4         | 16.8         | 11.9        | 120.3          | 87.6         | 90.9          | 66.1         | 48.9         | 35.4         | 25.6         | 18.4         |
| 2.1        | 22.2         | 14.7         | 16.9         | 11.1         | 9.2        | 6.0        | 4.7        | 3.1        | 40.3         | 27.9         | 30.8         | 21.3         | 17.1         | 11.8         | 9.1        | 6.2        | 72.3         | 51.8         | 55.0         | 39.3         | 30.0         | 21.4         | 15.8         | 11.2        | 117.0          | 85.2         | 87.6          | 63.6         | 46.3         | 33.5         | 23.8         | 17.2         |
| 2.2<br>2.3 | 21.9<br>21.5 | 14.4<br>14.2 | 16.5<br>16.1 | 10.9<br>10.6 | 8.9<br>8.5 | 5.8<br>5.6 | 4.5<br>4.2 | 2.9<br>2.7 | 39.6<br>38.8 | 27.4<br>26.9 | 30.1         | 20.8         | 16.4<br>15.8 | 11.3<br>10.9 | 8.6<br>8.1 | 5.9<br>5.5 | 70.7<br>69.0 | 50.6<br>49.4 | 53.3<br>51.7 | 38.1<br>36.9 | 28.6<br>27.2 | 20.4<br>19.4 | 14.8<br>13.9 | 10.5<br>9.8 | 113.7<br>110.3 | 82.7<br>80.2 | 84.3.<br>81.0 | 61.2<br>58.9 | 43.7<br>41.3 | 31.6<br>29.9 | 22.2<br>20.7 | 16.0<br>14.9 |
| 2.3        | 21.3         | 13.9         | 15.7         | 10.0         | 8.2        | 5.3        | 4.2        | 2.6        | 38.1         | 26.4         | 28.6         | 19.8         | 15.0         | 10.4         | 7.6        | 5.2        | 67.3         | 49.4         | 50.0         | 35.7         | 25.9         | 18.4         | 13.9         | 9.0         | 106.9          | 77.7         | 77.9          | 56.5         | 39.0         | 28.2         | 19.3         | 13.9         |
| 2.5        | 20.7         | 13.6         | 15.3         | 10.1         | 7.9        | 5.1        | 3.8        | 2.4        | 37.3         | 25.8         | 27.8         | 19.2         | 14.5         | 10.0         | 7.2        | 4.9        | 65.6         | 46.9         | 48.4         | 34.5         | 24.7         | 17.6         | 12.3         | 8.7         | 103.5          | 75.2         | 74.7          | 54.2         | 36.9         | 26.7         | 18.1         | 13.0         |
| 2.6        | 20.3         | 13.4         | 14.9         | 9.8          | 7.5        | 4.9        | 3.6        | 2.3        | 36.5         | 25.3         | 27.0         | 18.7         | 13.9         | 9.5          | 6.8        | 4.7        | 63.9         | 45.7         | 46.7         | 33.3         | 23.5         | 16.7         | 11.5         | 8.2         | 100.1          | 72.8         | 71.7          | 52.0         | 34.9         | 25.2         | 16.9         | 12.2         |
| 2.7        | 19.9         | 13.1         | 14.5         | 9.5          | 7.2        | 4.7        | 3.4        | 2.1        | 35.7         | 24.7         | 26.3         | 18.1         | 13.3         | 9.1          | 6.4        | 4.4        | 62.2         | 44.5         | 45.1         | 32.2         | 22.3         | 15.9         | 10.8         | 7.7         | 96.7           | 70.3         | 68.7          | 49.9         | 33.0         | 23.8         | 15.8         | 11.4         |
| 2.8        | 19.5         | 12.8         | 14.1         | 9.3          | 6.9        | 4.5        | 3.2        | 2.0        | 34.9         | 24.2         | 25.5         | 17.6         | 12.7         | 8.7          | 6.1        | 4.1        | 60.5         | 43.2         | 43.6         | 31.1         | 21.3         | 15.1         | 10.2         | 7.2         | 93.4           | 67.9         | 65.9          | 47.8         | 31.2         |              | 14.8         | 10.7         |
| 3.0        | 19.0<br>18.6 | 12.5         | 13.7         | 9.0          | 6.6        | 4.3        | 3.0        |            | 34.1         | 23.6         | 24.8         | 17.1<br>16.6 | 12.2         | 8.3          | 5.7        | 3.9        | 58.8<br>57.1 | 42.0         | 42.0         | 30.0<br>28.9 | 20.2         | 14.4         | 9.6          | 6.8         | 90.2           | 65.5         | 63.1          | 45.8         | 29.5         | 21.3         | 13.9<br>13.1 | 10.1<br>9 4  |
| 3.0        | 18.2         | 11.9         | 13.0         | 8.5          | 6.0        | 3.9        | 2.6        |            | 32.5         | 22.5         | 23.3         | 16.0         | 11.0         | 7.6          | 5.4        | 3.5        | 55.4         | 39.6         | 39.0         | 27.8         | 18.3         | 13.7         | 8.5          | 6.0         | 83.9           | 61.0         | 57.9          | 42.0         | 26.5         | 19.2         | 12.3         | 8.9          |
| 3.2        | 17.8         | 11.6         | 12.6         | 8.2          | 5.8        | 3.7        | 2.5        |            | 31.7         | 21.9         | 22.5         | 15.5         | 10.6         | 7.3          | 4.8        | 3.3        | 53.7         | 38.4         | 37.6         | 26.8         | 17.4         | 12.4         | 8.1          | 5.7         | 80.9           | 58.8         | 55.5          | 40.2         |              | 18.2         | 11.6         | 8.4          |
| 3.3        | 17.3         | 11.3         | 12.2         | 7.9          | 5.5        | 3.5        | 2.3        |            | 30.9         | 21.3         | 21.8         | 15.0         | 10.1         | 6.9          | 4.6        | 3.1        | 52.1         | 37.2         | 36.2         | 25.8         | 16.6         | 11.8         | 7.6          | 5.4         | 78.0           | 56.7         | 53.1          | 38.5         | 23.8         | 17.2         | 10.9         | 7.9          |
| 3.4        | 16.9         | 11.1         | 11.8         | 7.7          | 5.3        | 3.4        | 2.2        |            | 30.1         | 20.8         | 21.1         | 14.5         | 9.7          | 6.6          | 4.3        | 2.9        | 50.5         | 36.0         | 34.9         | 24.8         | 15.8         | 11.2         | 7.2          | 5.1         | 75.2           | 54.6         | 50.9          | 36.9         | 22.6         | 16.4         | 10.3         | 7.4          |
| 3.5        | 16.5         | 10.8         | 11.4         | 7.4          | 5.0        | 3.2        | 2.1        |            | 29.3         | 20.2         | 20.4         | 14.0         | 9.3          | 6.3          | 4.1        | 2.8        | 48.9         | 34.9         | 33.6         | 23.9         | 15.1         | 10.7         | 6.8          | 4.8         | 72.5           | 52.6         | 48.8          | 35.4         | 21.5         | 15.6         | 9.8          | 7.0          |
| 3.6<br>3.7 | 16.1<br>15.7 | 10.5<br>10.2 | 11.1<br>10.7 | 7.2<br>6.9   | 4.8<br>4.6 | 3.1<br>2.9 |            |            | 28.5<br>27.8 | 19.7<br>19.1 | 19.8<br>19.1 | 13.6<br>13.1 | 8.9<br>8.5   | 6.0<br>5.8   | 3.9<br>3.6 | 2.6<br>2.5 | 47.4<br>45.9 | 33.8<br>32.7 | 32.3<br>31.1 | 23.0<br>22.1 | 14.4<br>13.7 | 10.2<br>9.7  | 6.4<br>6.1   | 4.5<br>4.3  | 69.8<br>67.3   | 50.7<br>48.8 | 46.8<br>44.8  | 33.9<br>32.5 | 20.4<br>19.5 | 14.8<br>14.1 | 9.2<br>8.7   | 6.7<br>6.3   |
| 3.8        | 15.7         | 9.9          | 10.7         | 6.7          | 4.4        | 2.8        |            |            | 27.0         | 18.6         | 18.5         | 12.7         | 8.1          | 5.5          | 3.4        | 2.3        | 44.4         | 31.7         | 30.0         | 21.3         | 13.1         | 9.7          | 5.8          | 4.3         | 64.8           | 47.1         | 43.0          | 31.2         | 18.5         | 13.4         | 8.3          | 6.0          |
| 3.9        | 14.8         | 9.6          | 10.0         | 6.5          | 4.2        | 2.6        |            |            | 26.3         | 18.1         | 17.8         | 12.2         | 7.7          | 5.3          | 3.3        | 2.2        | 43.0         | 30.7         | 28.8         | 20.5         | 12.5         | 8.8          | 5.5          | 3.8         | 62.5           | 45.3         | 41.2          | 29.9         | 17.7         | 12.8         | 7.8          | 5.6          |
| 4.0        | 14.4         | 9.4          | 9.7          | 6.2          | 4.0        | 2.5        |            |            | 25.5         | 17.6         | 17.2         | 11.8         | 7.4          | 5.0          | 3.1        | 2.1        | 41.6         | 29.7         | 27.8         | 19.7         | 11.9         | 8.4          | 5.2          | 3.6         | 60.2           | 43.7         | 39.6          | 28.7         | 16.8         | 12.2         | 7.4          | 5.4          |
| 4.1        | 14.0         | 9.1          | 9.3          | 6.0          | 3.8        | 2.4        |            |            | 24.8         | 17.0         | 16.6         | 11.4         | 7.1          | 4.8          | 2.9        |            | 40.3         | 28.7         | 26.7         | 19.0         | 11.4         | 8.1          | 4.9          | 3.4         | 58.0           | 42.1         | 38.0          | 27.5         | 16.1         | 11.6         | 7.0          | 5.1          |
| 4.2        | 13.6         | 8.8          | 9.0          | 5.8          | 3.6        | 2.2        |            |            | 24.1         | 16.6         | 16.1         | 11.0         | 6.7          | 4.6          | 2.7        |            | 39.0         | 27.8         | 25.7         | 18.3         | 10.9         | 7.7          | 4.6          | 3.3         | 55.9           | 40.6         | 36.5          | 26.4         | 15.3         | 11.1         | 6.7          | 4.8          |
| 4.3<br>4.4 | 13.2<br>12.9 | 8.6<br>8.3   | 8.7<br>8.4   | 5.6<br>5.4   | 3.4        | 2.1        |            |            | 23.4<br>22.7 | 16.1<br>15.6 | 15.5<br>15.0 | 10.6<br>10.3 | 6.4<br>6.2   | 4.4<br>4.2   | 2.6<br>2.4 |            | 37.7<br>36.5 | 26.9<br>26.0 | 24.8<br>23.9 | 17.6<br>17.0 | 10.4<br>9.9  | 7.3<br>7.0   | 4.4<br>4.2   | 3.1<br>2.9  | 53.9<br>52.0   | 39.1<br>37.8 | 35.0<br>33.7  | 25.4<br>24.4 | 14.6<br>14.0 | 10.6<br>10.1 | 6.4<br>6.0   | 4.6<br>4.3   |
| 4.5        | 12.5         | 8.1          | 8.1          | 5.2          | 3.1        | 2.0        |            |            | 22.7         | 15.1         | 14.5         | 9.9          | 5.9          | 4.0          | 2.3        |            | 35.3         | 25.1         | 23.0         | 16.4         | 9.5          | 6.7          | 4.0          | 2.8         | 50.2           | 36.4         | 32.4          | 23.5         | 13.4         | 9.7          | 5.7          | 4.1          |
| 4.6        | 12.1         | 7.8          | 7.8          | 5.0          | 2.9        |            |            |            | 21.4         | 14.7         | 14.0         | 9.6          | 5.6          | 3.8          | 2.2        |            | 34.2         | 24.3         | 22.2         | 15.8         | 9.1          | 6.4          | 3.8          | 2.6         | 48.4           | 35.1         | 31.1          | 22.6         | 12.8         | 9.2          | 5.5          | 3.9          |
| 4.7        | 11.8         | 7.6          | 7.5          | 4.8          | 2.8        |            |            |            | 20.8         | 14.2         | 13.5         | 9.2          | 5.4          | 3.6          | 2.0        |            | 33.1         | 23.5         | 21.4         | 15.2         | 8.7          | 6.1          | 3.6          | 2.5         | 46.7           | 33.9         | 29.9          | 21.7         | 12.2         | 8.8          | 5.2          | 3.7          |
| 4.8        | 11.4         | 7.3          | 7.2          | 4.6          | 2.6        |            |            |            | 20.1         | 13.8         | 13.0         | 8.9          | 5.1          | 3.5          |            |            | 32.0         | 22.8         | 20.6         | 14.6         | 8.3          | 5.9          | 3.4          | 2.4         | 45.1           | 32.7         | 28.8          | 20.9         | 11.7         | 8.5          | 4.9          | 3.6          |
| 4.9        | 11.1         | 7.1          | 7.0          | 4.4          | 2.5        |            |            |            | 19.5         | 13.4         | 12.6         | 8.6          | 4.9          | 3.3          |            |            | 31.0         | 22.0         | 19.9         | 14.1         | 8.0          | 5.6          | 3.2          | 2.2         | 43.6           | 31.6         | 27.7          | 20.1         | 11.2         | 8.1          | 4.7          | 3.4          |
| 5.0<br>5.1 | 10.7<br>10.4 | 6.9<br>6.6   | 6.7<br>6.5   | 4.2<br>4.1   | 2.3        |            |            |            | 19.0<br>18.4 | 13.0<br>12.6 | 12.1<br>11.7 | 8.3<br>8.0   | 4.7<br>4.5   | 3.1<br>3.0   |            |            | 30.0<br>29.0 | 21.3<br>20.6 | 19.2<br>18.5 | 13.6<br>13.1 | 7.6<br>7.3   | 5.4<br>5.1   | 3.1<br>2.9   | 2.1<br>2.0  | 42.1<br>40.6   | 30.5<br>29.5 | 26.7<br>25.7  | 19.4<br>18.6 | 10.7<br>10.3 | 7.8<br>7.4   | 4.5<br>4.3   | 3.2<br>3.1   |
| 5.2        | 10.4         | 6.4          | 6.2          | 3.9          | 2.2        |            |            |            | 17.8         | 12.0         | 11.7         | 7.7          | 4.3          | 2.9          |            |            | 28.1         | 20.0         | 17.8         | 12.6         | 7.0          | 4.9          | 2.9          | 2.0         | 39.3           | 28.5         | 24.8          | 18.0         | 9.9          | 7.4          | 4.3          | 2.9          |
| 5.3        | 9.7          | 6.2          | 6.0          | 3.8          | 2.1        |            |            |            | 17.3         | 11.8         | 10.9         | 7.4          | 4.1          | 2.7          |            |            | 27.2         | 19.3         | 17.2         | 12.2         | 6.7          | 4.7          | 2.6          |             | 38.0           | 27.5         | 23.9          | 17.3         | 9.5          | 6.8          | 3.9          | 2.8          |
| 5.4        | 9.4          | 6.0          | 5.8          | 3.6          |            |            |            |            | 16.8         | 11.4         | 10.5         | 7.1          | 3.9          | 2.6          |            |            | 26.3         | 18.7         | 16.6         | 11.8         | 6.4          | 4.5          | 2.5          |             | 36.7           | 26.6         | 23.1          | 16.7         | 9.1          | 6.6          | 3.7          | 2.6          |
| 5.5        | 9.1          | 5.8          | 5.5          | 3.4          |            |            |            |            | 16.3         | 11.1         | 10.2         | 6.9          | 3.7          | 2.5          |            |            | 25.5         | 18.1         | 16.0         | 11.3         | 6.2          | 4.3          | 2.3          |             | 35.5           | 25.7         | 22.3          | 16.1         | 8.7          | 6.3          | 3.5          | 2.5          |
| 5.6        | 8.8          | 5.6          | 5.3          | 3.3          |            |            |            |            | 15.8         | 10.7         | 9.8          | 6.6          | 3.5          | 2.3          |            |            | 24.7         | 17.5         | 15.5         | 10.9         | 5.9          | 4.1          | 2.2          |             | 34.3           | 24.9         | 21.5          | 15.5         | 8.4          | 6.0          | 3.4          | 2.4          |
| 5.7        | 8.6          | 5.4          | 5.1          | 3.2          |            |            |            |            | 15.3         | 10.4         | 9.5          | 6.4          | 3.4          | 2.2<br>2.1   |            |            | 23.9         | 17.0         | 14.9         | 10.6         | 5.7          | 4.0          | 2.1          |             | 33.2           | 24.1         | 20.7          | 15.0         | 8.0          | 5.8          | 3.2          | 2.3<br>2.2   |
| 5.8<br>5.9 | 8.3<br>8.0   | 5.2<br>5.0   | 4.9<br>4.7   | 3.0<br>2.9   |            |            |            |            | 14.8<br>14.4 | 10.1<br>9.8  | 9.1<br>8.8   | 6.2<br>5.9   | 3.2<br>3.1   | 2.1          |            |            | 23.2<br>22.5 | 16.5<br>15.9 | 14.4<br>13.9 | 10.2<br>9.8  | 5.4<br>5.2   | 3.8          |              |             | 32.2<br>31.1   | 23.3         | 20.0<br>19.3  | 14.5<br>14.0 | 7.7<br>7.4   | 5.5<br>5.3   | 3.0<br>2.9   | 2.2          |
| 6.0        | 7.7          | 4.8          | 4.7          | 2.8          |            |            |            |            | 13.9         | 9.5          | 8.5          | 5.7          | 2.9          | 2.0          |            |            | 21.8         |              | 13.5         | 9.5          | 5.0          | 3.5          |              |             |                |              | 18.7          |              | 7.4          | 5.3          | 2.8          | ۷.۱          |
| 0.0        | 1.7          | 4.0          | 4.5          | 2.0          |            |            |            |            |              | 7.5          | 0.5          | J.1          | ۷. /         |              |            |            | 21.0         | 13.4         | 10.0         | 7.5          | 5.0          | 5.5          |              |             |                | 21.0         | 10.7          | 10.0         | 7.1          | J.1          | 2.0          |              |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

Note: Where design requirements are for the following sizes:- 100x50 - build in this size using 90x45 height / load data; 100x38 - build in this size using 90x35 height / load data; 75x50 - build in this size using 70x45 height / load data.

#### C Design Tables

# Selector+ PLASTERBOARD SYSTEMS

## Load Bearing Walls - Axial Load Capacity in kN/Stud

## Timber Stud - Charfactor 18

| Luau L        | ocai i       | iiy i      | vvali        | <b>3</b> - | MAIC       | ai LC      | Jau        | vapa       | acity        | III          | CIM/S        | iuu          |              |            |            |       |              |              |              |              |            |              |              | - 11       | iiibe              | ı St         | uu -         | UII          | aiic         |              | ו וע         | U            |
|---------------|--------------|------------|--------------|------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|------------|------------|-------|--------------|--------------|--------------|--------------|------------|--------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|               |              | Tir        | nber         | Stre       | ess G      | rade       | F5         |            |              | Tir          | nber         | Stre         | ss G         | rade       | F8         |       |              | Tim          | ber          | Stre         | ss Gr      | rade         | F14          |            |                    | Tim          | ber          | Stres        | ss Gr        | ade          | F22          |              |
| Wall          |              |            | Stud         | size       | (mmx       | mm)        |            |            |              |              | Stu          | d size       | (mmx         | mm)        |            |       |              |              | Stu          | d size       | (mmx       | mm)          |              |            |                    |              | Stu          | d size       | (mmx         | mm)          |              |              |
| Height        | 140x45       | 140x35     | 120x45       | 120x35     | 90x45      | 90x35      | 70x45      | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35      | 70x45      | 70x35 | 140x45       | 140x35       | 120x45       | 120x35       | 90x45      | 90x35        | 70x45        | 70x35      | 140x45             | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35        |
| (m)           | 14           | 14         | 12           | 12         | 06         | 06         | 2/         | 70         | 14           | 14           | 12           | 12           | 06           | 06         | 2/         | 70    | 14           | 14           | 12           | 12           | 06         | 06           | 2/           | 70         | 14                 | 14           | 12           | 12           | 06           | 06           | 2/2          | 70           |
| 2.0           | 18.7         | 11.6       | 14.1         | 8.7        | 7.5        | 4.6        | 3.7        | 2.2        | 35.7         | 23.9         | 27.1         | 18.1         | 14.8         | 9.9        | 7.7        | 5.1   | 66.6         | 46.7         | 50.6         | 35.3         | 27.5       | 19.1         | 14.3         | 9.9        | 110.8              | 79.4         | 83.0         | 59.4         | 44.0         | 31.3         | 22.5         | 16.0         |
| 2.1           | 18.4         | 11.4       | 13.7         | 8.5        | 7.2        | 4.4        | 3.5        | 2.1        | 35.1         | 23.5         | 26.5         | 17.7         | 14.3         | 9.5        | 7.3        | 4.8   | 65.2         | 45.6         | 49.1         | 34.3         | 26.2       | 18.2         | 13.4         | 9.3        | 107.7              | 77.2         | 80.0         | 57.2         | 41.6         | 29.6         | 21.0         | 14.9         |
| 2.2           | 18.1         | 11.2       | 13.4         | 8.3        | 6.9        | 4.2        | 3.3        |            | 34.4         | 23.0         | 25.8         | 17.3         | 13.7         | 9.1        | 6.9        | 4.5   | 63.7         | 44.6         | 47.6         | 33.2         | 25.0       | 17.4         | 12.6         | 8.7        | 104.6              | 74.9         | 77.0         | 55.0         | 39.3         | 28.0         | 19.6         | 13.9         |
| 2.3<br>2.4    | 17.8<br>17.4 | 11.0       | 13.1<br>12.8 | 8.1<br>7.9 | 6.6<br>6.4 | 4.1<br>3.9 | 3.1<br>2.9 |            | 33.8<br>33.1 | 22.6<br>22.1 | 25.2<br>24.5 | 16.8         | 13.1<br>12.6 | 8.7<br>8.3 | 6.5<br>6.1 | 4.3   | 62.2<br>60.6 | 43.5         | 46.1<br>44.6 | 32.2<br>31.1 | 23.8       | 16.5<br>15.7 | 11.8<br>11.1 | 8.2<br>7.7 | 101.5<br>98.3      | 72.6<br>70.4 | 74.0         | 52.9<br>50.8 | 37.1<br>35.1 | 26.4<br>25.0 | 18.2<br>17.0 | 13.0<br>12.1 |
| 2.4           | 17.4         | 10.8       | 12.4         | 7.7        | 6.1        | 3.7        | 2.7        |            | 32.4         | 21.6         | 23.8         | 16.4<br>15.9 | 12.0         | 8.0        | 5.8        | 3.8   | 59.1         | 42.4         | 43.1         | 30.1         | 21.5       | 15.7         | 10.4         | 7.2        | 95.2               | 68.1         | 71.1<br>68.2 | 48.7         | 33.1         | 23.6         | 15.9         | 11.3         |
| 2.6           | 16.7         | 10.3       | 12.1         | 7.4        | 5.8        | 3.5        | 2.6        |            | 31.7         | 21.0         | 23.2         | 15.7         | 11.5         | 7.6        | 5.4        | 3.6   | 57.5         | 40.2         | 41.7         | 29.1         | 20.5       | 14.2         | 9.8          | 6.8        | 92.0               | 65.9         | 65.4         | 46.7         | 31.3         | 22.3         | 14.9         | 10.6         |
| 2.7           | 16.4         | 10.1       | 11.8         | 7.2        | 5.6        | 3.4        | 2.4        |            | 31.0         | 20.7         | 22.5         | 15.0         | 11.0         | 7.3        | 5.1        | 3.4   | 56.0         | 39.1         | 40.2         | 28.1         | 19.5       | 13.5         | 9.2          | 6.4        | 88.9               | 63.6         | 62.7         | 44.8         | 29.6         | 21.1         | 14.0         | 9.9          |
| 2.8           | 16.0         | 9.9        | 11.4         | 7.0        | 5.3        | 3.2        | 2.3        |            | 30.3         | 20.2         | 21.8         | 14.5         | 10.5         | 7.0        | 4.8        | 3.2   | 54.4         | 38.0         | 38.8         | 27.1         | 18.5       | 12.9         | 8.7          | 6.0        | 85.9               | 61.4         | 60.1         | 42.9         | 28.0         | 19.9         | 13.1         | 9.3          |
| 2.9           | 15.7         | 9.6        | 11.1         | 6.8        | 5.1        | 3.1        | 2.1        |            | 29.6         | 19.7         | 21.2         | 14.1         | 10.1         | 6.7        | 4.6        | 3.0   | 52.9         | 36.9         | 37.4         | 26.1         | 17.6       | 12.2         | 8.2          | 5.6        | 82.9               | 59.3         | 57.6         | 41.1         | 26.5         | 18.9         | 12.3         | 8.7          |
| 3.0           | 15.3         | 9.4        | 10.8         | 6.6        | 4.9        | 2.9        |            |            | 28.9         | 19.2         | 20.5         | 13.6         | 9.6          | 6.4        | 4.3        | 2.8   | 51.3         | 35.8         | 36.1         | 25.1         | 16.8       | 11.6         | 7.7          | 5.3        | 80.0               | 57.2         | 55.2         | 39.4         | 25.1         | 17.9         | 11.5         | 8.2          |
| 3.1           | 14.9         | 9.2        | 10.4         | 6.4        | 4.6        | 2.8        |            |            | 28.2         | 18.8         | 19.9         | 13.2         | 9.2          | 6.1        | 4.1        | 2.6   | 49.8         | 34.8         | 34.8         | 24.2         | 16.0       | 11.1         | 7.2          | 5.0        | 77.2               | 55.2         | 52.9         | 37.7         | 23.8         | 16.9         | 10.9         | 7.7          |
| 3.2           | 14.6         | 8.9        | 10.1         | 6.2        | 4.4        | 2.6        |            |            | 27.5         | 18.3         | 19.3         | 12.8         | 8.8          | 5.8        | 3.8        | 2.5   | 48.3         | 33.7         | 33.5         | 23.3         | 15.2       | 10.5         | 6.8          | 4.7        | 74.4               | 53.2         | 50.6         | 36.1         | 22.6         | 16.1         | 10.2         | 7.3          |
| 3.3           | 14.2         | 8.7        | 9.8          | 5.9        | 4.2        | 2.5        |            |            | 26.7         | 17.8         | 18.6         | 12.4         | 8.4          | 5.5        | 3.6        | 2.3   | 46.8         | 32.7         | 32.2         | 22.5         | 14.5       | 10.0         | 6.4          | 4.4        | 71.7               | 51.3         | 48.5         | 34.6         | 21.4         | 15.2         | 9.6          | 6.8          |
| 3.4           | 13.8         | 8.5        | 9.5          | 5.7        | 3.8        | 2.4        |            |            | 26.0<br>25.4 | 17.3         | 18.0<br>17.4 | 11.9         | 7.6          | 5.3        | 3.4        | 2.2   | 45.4         | 31.7         | 31.1         | 21.6         | 13.8       | 9.6          | 6.1<br>5.7   | 4.2        | 69.1               | 49.4         | 46.5<br>44.5 | 33.2         | 20.3         | 14.5         | 9.1          | 6.5          |
| 3.6           | 13.1         | 8.0        | 8.8          | 5.3        | 3.6        | 2.2        |            |            | 24.7         | 16.4         | 16.8         | 11.5<br>11.1 | 7.0          | 4.8        | 3.0        | 2.1   | 44.0<br>42.6 | 29.7         | 28.8         | 20.6         | 12.5       | 9.1<br>8.7   | 5.4          | 3.7        | 66.6<br>64.2       | 45.9         | 44.5         | 30.5         | 18.4         | 13.1         | 8.1          | 5.8          |
| 3.7           | 12.8         | 7.8        | 8.5          | 5.1        | 3.4        | 2.0        |            |            | 24.7         | 15.9         | 16.3         | 10.8         | 7.0          | 4.6        | 2.8        |       | 41.2         | 28.7         | 27.7         | 19.3         | 11.9       | 8.3          | 5.1          | 3.5        | 61.8               | 44.2         | 40.9         | 29.2         | 17.5         | 12.4         | 7.7          | 5.4          |
| 3.8           | 12.4         | 7.5        | 8.3          | 5.0        | 3.3        | 2.0        |            |            | 23.3         | 15.5         | 15.7         | 10.4         | 6.6          | 4.3        | 2.7        |       | 39.9         | 27.8         | 26.7         | 18.5         | 11.4       | 7.9          | 4.9          | 3.3        | 59.6               | 42.6         | 39.3         | 28.0         | 16.6         | 11.8         | 7.3          | 5.1          |
| 3.9           | 12.1         | 7.3        | 8.0          | 4.8        | 3.1        |            |            |            | 22.7         | 15.0         | 15.2         | 10.0         | 6.3          | 4.1        | 2.5        |       | 38.6         | 26.9         | 25.7         | 17.8         | 10.9       | 7.5          | 4.6          | 3.2        | 57.4               | 41.0         | 37.7         | 26.9         | 15.9         | 11.3         | 6.9          | 4.9          |
| 4.0           | 11.7         | 7.1        | 7.7          | 4.6        | 2.9        |            |            |            | 22.0         | 14.6         | 14.7         | 9.7          | 6.1          | 3.9        | 2.4        |       | 37.4         | 26.0         | 24.7         | 17.2         | 10.4       | 7.2          | 4.3          | 3.0        | 55.4               | 39.5         | 36.1         | 25.8         | 15.1         | 10.7         | 6.5          | 4.6          |
| 4.1           | 11.4         | 6.9        | 7.4          | 4.4        | 2.8        |            |            |            | 21.4         | 14.1         | 14.2         | 9.3          | 5.8          | 3.8        | 2.2        |       | 36.2         | 25.2         | 23.8         | 16.5         | 9.9        | 6.8          | 4.1          | 2.8        | 53.4               | 38.1         | 34.7         | 24.7         | 14.4         | 10.2         | 6.2          | 4.4          |
| 4.2           | 11.1         | 6.7        | 7.1          | 4.2        | 2.6        |            |            |            | 20.8         | 13.7         | 13.7         | 9.0          | 5.5          | 3.6        | 2.1        |       | 35.0         | 24.4         | 22.9         | 15.9         | 9.4        | 6.5          | 3.9          | 2.7        | 51.4               | 36.7         | 33.3         | 23.8         | 13.8         | 9.8          | 5.9          | 4.1          |
| 4.3           | 10.7         | 6.4        | 6.9          | 4.1        | 2.5        |            |            |            | 20.1         | 13.3         | 13.2         | 8.7          | 5.3          | 3.4        |            |       | 33.9         | 23.6         | 22.1         | 15.3         | 9.0        | 6.2          | 3.7          | 2.5        | 49.6               | 35.4         | 32.0         | 22.8         | 13.1         | 9.3          | 5.6          | 3.9          |
| 4.4           | 10.4         | 6.2        | 6.6          | 3.9        | 2.4        |            |            |            | 19.6         | 12.9         | 12.7         | 8.4          | 5.0          | 3.2        |            |       | 32.8         | 22.8         | 21.2         | 14.7         | 8.6        | 5.9          | 3.5          | 2.4        | 47.8               | 34.2         | 30.8         | 21.9         | 12.5         | 8.9          | 5.3          | 3.7          |
| 4.5<br>4.6    | 10.1<br>9.8  | 6.0<br>5.8 | 6.4<br>6.1   | 3.7<br>3.6 | 2.2<br>2.1 |            |            |            | 19.0         | 12.5         | 12.3         | 8.1          | 4.8<br>4.6   | 3.1<br>2.9 |            |       | 31.7<br>30.7 | 22.0<br>21.3 | 20.5<br>19.7 | 14.2<br>13.7 | 8.2        | 5.7<br>5.4   | 3.3<br>3.1   | 2.2<br>2.1 | 46.1<br>44.5       | 32.9<br>31.8 | 29.6<br>28.4 | 21.1         | 12.0         | 8.5<br>8.1   | 5.0<br>4.8   | 3.5<br>3.4   |
| 4.0           | 9.6<br>9.5   | 5.6        | 5.9          | 3.4        | Z. I       |            |            |            | 18.4<br>17.9 | 12.1<br>11.8 | 11.9<br>11.4 | 7.8<br>7.5   | 4.0          | 2.9        |            |       | 29.7         | 20.6         | 19.7         | 13.7         | 7.9<br>7.5 | 5.4          | 3.0          | 2.1        | 44.5               | 30.7         | 27.3         | 20.3<br>19.5 | 11.5<br>11.0 | o.1<br>7.8   | 4.5          | 3.4          |
| 4.7           | 9.2          | 5.4        | 5.7          | 3.3        |            |            |            |            | 17.3         | 11.4         | 11.0         | 7.2          | 4.2          | 2.7        |            |       | 28.7         | 19.9         | 18.3         | 12.7         | 7.3        | 4.9          | 2.8          | 2.0        | 41.5               | 29.6         | 26.3         | 18.7         | 10.5         | 7.4          | 4.3          | 3.0          |
| 4.9           | 8.9          | 5.3        | 5.4          | 3.2        |            |            |            |            | 16.8         | 11.0         | 10.6         | 6.9          | 4.0          | 2.5        |            |       | 27.8         | 19.3         | 17.6         | 12.2         | 6.9        | 4.7          | 2.7          |            | 40.1               | 28.6         | 25.3         | 18.0         | 10.0         | 7.1          | 4.1          | 2.9          |
| 5.0           | 8.6          | 5.1        | 5.2          | 3.0        |            |            |            |            | 16.3         | 10.7         | 10.3         | 6.7          | 3.8          | 2.4        |            |       | 26.9         | 18.7         | 17.0         | 11.8         | 6.6        | 4.5          | 2.5          |            | 38.7               | 27.6         | 24.4         | 17.4         | 9.6          | 6.8          | 3.9          | 2.7          |
| 5.1           | 8.3          | 4.9        | 5.0          | 2.9        |            |            |            |            | 15.8         | 10.4         | 9.9          | 6.4          | 3.6          | 2.3        |            |       | 26.0         | 18.1         | 16.4         | 11.3         | 6.3        | 4.3          | 2.4          |            | 37.4               | 26.7         | 23.5         | 16.7         | 9.2          | 6.5          | 3.7          | 2.6          |
| 5.2           | 8.0          | 4.7        | 4.8          | 2.7        |            |            |            |            | 15.3         | 10.0         | 9.5          | 6.2          | 3.4          | 2.2        |            |       | 25.2         | 17.5         | 15.8         | 10.9         | 6.0        | 4.1          | 2.3          |            | 36.1               | 25.8         | 22.6         | 16.1         | 8.8          | 6.3          | 3.5          | 2.5          |
| 5.3           | 7.8          | 4.5        | 4.6          | 2.6        |            |            |            |            | 14.8         | 9.7          | 9.2          | 6.0          | 3.3          | 2.0        |            |       | 24.4         | 16.9         | 15.3         | 10.5         | 5.8        | 3.9          | 2.1          |            | 34.9               | 24.9         | 21.8         | 15.5         | 8.5          | 6.0          | 3.4          | 2.3          |
| 5.4           | 7.5          | 4.4        | 4.4          | 2.5        |            |            |            |            | 14.4         | 9.4          | 8.9          | 5.7          | 3.1          |            |            |       | 23.6         | 16.4         | 14.7         | 10.2         | 5.5        | 3.8          | 2.0          |            | 33.7               | 24.1         | 21.0         | 15.0         | 8.1          | 5.7          | 3.2          | 2.2          |
| 5.5           | 7.3          | 4.2        | 4.2          | 2.4        |            |            |            |            | 13.9         | 9.1          | 8.6          | 5.5          | 2.9          |            |            |       | 22.9         | 15.8         | 14.2         | 9.8          | 5.3        | 3.6          |              |            | 32.6               | 23.3         | 20.3         | 14.4         | 7.8          | 5.5          | 3.0          | 2.1          |
| 5.6           | 7.0          | 4.0        | 4.1          | 2.2        |            |            |            |            | 13.5         | 8.8          | 8.2          | 5.3          | 2.8          |            |            |       | 22.1         | 15.3         | 13.7         | 9.5          | 5.1        | 3.4          |              |            | 31.6               | 22.5         | 19.6         | 13.9         | 7.5          | 5.3          | 2.9          | 2.0          |
| 5.7<br>5.8    | 6.8          | 3.9        | 3.9<br>3.7   | 2.1        |            |            |            |            | 13.1         | 8.5          | 7.9<br>7.7   | 5.1<br>4.9   | 2.7<br>2.5   |            |            |       | 21.4         | 14.8         | 13.2         | 9.1          | 4.8<br>4.6 | 3.3<br>3.1   |              |            | 30.5               | 21.8         | 18.9         | 13.4         | 7.2          | 5.1<br>4.8   | 2.7<br>2.6   |              |
| 5.8           | 6.5<br>6.3   | 3.7<br>3.6 | 3.7          | 2.0        |            |            |            |            | 12.7<br>12.3 | 8.2          | 7.4          | 4.9          | 2.5          |            |            |       | 20.8<br>20.1 | 14.4<br>13.9 | 12.8<br>12.3 | 8.8<br>8.5   | 4.0        | 3.0          |              |            | 29.6<br>28.6       | 21.1         | 18.2<br>17.6 | 13.0<br>12.5 | 6.9<br>6.6   | 4.6          | 2.6          |              |
| 6.0           | 6.1          | 3.4        | 3.4          |            |            |            |            |            | 11.9         | 0.0<br>7.7   | 7.4<br>7.1   | 4.7          | 2.4          |            |            |       | 19.5         |              | 11.9         | 8.2          | 4.4        | 2.9          |              |            |                    | 19.7         |              | 12.5         | 6.3          | 4.5          | 2.5          |              |
| • These table |              |            |              | nction v   | with Soc   | tions AF   | . 162      | A O and no |              |              |              | 7.0          | ۷. ک         |            |            |       | 17.5         |              |              |              |            |              | ro for th    | o followir | 7.17<br>na sizas:- |              |              |              |              |              |              | ad data.     |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

Note: Where design requirements are for the following sizes:- 100x50 - build in this size using 90x45 height / load data; 100x38 - build in this size using 90x35 height / load data; 75x50 - build in this size using 70x45 height / load data.

# **Selector+** PLASTERBOARD SYSTEMS

# Load Bearing Walls - Axial Load Capacity in kN/Stud

#### Timber Stud - Charfactor 21

|                      |              | Tir        | nber         | Stre       | ss G       | irade      | F5    |       |              | Tir          | nber         | Stre         | ess G        | rade       | F8         |            |                     | Tim          | ber          | Stre         | ss Gr        | ade          | F14          |            |              | Tim          | ber :        | Stres        | ss Gr        | ade             | F22          |              |
|----------------------|--------------|------------|--------------|------------|------------|------------|-------|-------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|
| Wall                 |              |            | Stud         | d size     | (mmx       | mm)        |       |       |              |              | Stu          | d size       | (mmx         | mm)        |            |            |                     |              | Stu          | d size       | (mmx         | mm)          |              |            |              |              | Stud         | d size       | (mmx         | mm)             |              |              |
| Height (m)           | 140x45       | 140x35     | 120x45       | 120x35     | 90x45      | 90x35      | 70x45 | 70x35 | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35      | 70x45      | 70x35      | 140x45              | 140x35       | 120x45       | 120x35       | 90x45        | 90x35        | 70x45        | 70x35      | 140x45       | 140x35       | 120x45       | 120x35       | 90x45        | 90x35           | 70x45        | 70x35        |
| 2.0                  | 15.3         | 8.7        | 11.3         | 6.4        | 5.7        | 3.2        | 2.7   |       | 30.9         | 19.8         | 23.2         | 14.8         | 12.3         | 7.8        | 6.1        | 3.9        | 59.9                | 40.9         | 45.0         | 30.7         | 23.9         | 16.2         | 12.1         | 8.2        | 101.9        | 71.7         | 75.7         | 53.2         | 39.4         | 27.6            | 19.8         | 13.8         |
| 2.1                  | 15.0         | 8.6        | 11.0         | 6.3        | 5.5        | 3.1        | 2.5   |       | 30.3         | 19.4         | 22.6         | 14.5         | 11.8         | 7.5        | 5.8        | 3.6        | 58.6                | 40.0         | 43.7         | 29.8         | 22.8         | 15.5         | 11.4         | 7.7        | 99.0         | 69.7         | 73.0         | 51.3         | 37.3         | 26.1            | 18.5         | 12.9         |
| 2.2<br>2.3           | 14.7<br>14.5 | 8.4<br>8.2 | 10.8<br>10.5 | 6.1<br>5.9 | 5.3<br>5.1 | 2.9<br>2.8 | 2.4   |       | 29.7<br>29.1 | 19.0<br>18.7 | 22.0<br>21.5 | 14.1<br>13.7 | 11.3<br>10.8 | 7.2<br>6.9 | 5.5<br>5.1 | 3.4        | 57.2<br>55.8        | 39.0<br>38.1 | 42.3<br>41.0 | 28.8<br>27.9 | 21.7<br>20.7 | 14.7<br>14.0 | 10.7<br>10.0 | 7.2<br>6.8 | 96.1<br>93.2 | 67.6<br>65.6 | 70.2<br>67.5 | 49.3<br>47.4 | 35.2<br>33.3 | 24.6<br>23.3    | 17.2<br>16.0 | 12.0<br>11.2 |
| 2.4                  | 14.2         | 8.1        | 10.3         | 5.8        | 4.8        | 2.7        | 2.2   |       | 28.6         | 18.3         | 20.9         | 13.7         | 10.4         | 6.6        | 4.8        | 3.0        | 54.4                | 37.1         | 39.7         | 27.0         | 19.7         | 13.3         | 9.4          | 6.3        | 90.3         | 63.5         | 64.8         | 45.5         | 31.4         | 22.0            | 15.0         | 10.4         |
| 2.5                  | 13.9         | 7.9        | 9.9          | 5.6        | 4.6        | 2.6        |       |       | 27.9         | 17.9         | 20.3         | 12.9         | 9.9          | 6.3        | 4.6        | 2.9        | 53.0                | 36.1         | 38.3         | 26.1         | 18.7         | 12.7         | 8.8          | 5.9        | 87.4         | 61.4         | 62.2         | 43.6         | 29.7         | 20.8            | 14.0         | 9.8          |
| 2.6                  | 13.6         | 7.7        | 9.6          | 5.4        | 4.4        | 2.4        |       |       | 27.3         | 17.5         | 19.7         | 12.6         | 9.5          | 6.0        | 4.3        | 2.7        | 51.6                | 35.2         | 37.0         | 25.2         | 17.8         | 12.1         | 8.3          | 5.6        | 84.5         | 59.4         | 59.6         | 41.9         | 28.1         | 19.6            | 13.1         | 9.1          |
| 2.7                  | 13.3         | 7.5        | 9.4          | 5.3        | 4.2        | 2.3        |       |       | 26.7         | 17.1         | 19.1         | 12.2         | 9.1          | 5.7        | 4.0        | 2.5        | 50.2                | 34.2         | 35.7         | 24.3         | 16.9         | 11.5         | 7.8          | 5.2        | 81.6         | 57.4         | 57.2         | 40.1         | 26.6         | 18.6            | 12.3         | 8.5          |
| 2.8<br>2.9           | 13.0<br>12.7 | 7.3<br>7.1 | 9.1<br>8.8   | 5.1<br>4.9 | 4.0<br>3.8 | 2.2        |       |       | 26.1<br>25.5 | 16.6<br>16.2 | 18.6<br>18.0 | 11.8<br>11.4 | 8.7<br>8.3   | 5.5<br>5.2 | 3.8<br>3.6 | 2.4<br>2.2 | 48.8<br>47.4        | 33.2<br>32.3 | 34.5<br>33.2 | 23.4<br>22.6 | 16.1<br>15.3 | 10.9<br>10.4 | 7.3<br>6.9   | 4.9<br>4.6 | 78.8<br>76.1 | 55.4<br>53.5 | 54.8<br>52.5 | 38.4<br>36.8 | 25.1<br>23.8 | 17.6<br>16.6    | 11.5<br>10.8 | 8.0<br>7.5   |
| 3.0                  | 12.4         | 6.9        | 8.5          | 4.7        | 3.6        | Z.1        |       |       | 24.8         | 15.8         | 17.4         | 11.1         | 7.9          | 5.0        | 3.4        | 2.1        | 46.0                | 31.3         | 32.0         | 21.7         | 14.6         | 9.8          | 6.5          | 4.4        | 73.4         | 51.6         | 50.3         | 35.3         | 22.5         | 15.7            | 10.0         | 7.1          |
| 3.1                  | 12.1         | 6.8        | 8.2          | 4.6        | 3.5        |            |       |       | 24.2         | 15.4         | 16.9         | 10.7         | 7.5          | 4.7        | 3.2        |            | 44.6                | 30.4         | 30.9         | 20.9         | 13.9         | 9.4          | 6.1          | 4.1        | 70.8         | 49.7         | 48.2         | 33.8         | 21.3         | 14.9            | 9.5          | 6.6          |
| 3.2                  | 11.7         | 6.6        | 8.0          | 4.4        | 3.3        |            |       |       | 23.6         | 15.0         | 16.3         | 10.3         | 7.2          | 4.5        | 3.0        |            | 43.3                | 29.4         | 29.7         | 20.2         | 13.2         | 8.9          | 5.8          | 3.9        | 68.3         | 47.9         | 46.2         | 32.4         | 20.2         | 14.1            | 9.0          | 6.2          |
| 3.3                  | 11.4         | 6.4        | 7.7          | 4.2        | 3.1        |            |       |       | 23.0         | 14.6         | 15.8         | 10.0         | 6.9          | 4.3        | 2.8        |            | 41.9                | 28.5         | 28.6         | 19.4         | 12.6         | 8.5          | 5.4          | 3.6        | 65.8         | 46.2         | 44.2         | 31.0         | 19.2         | 13.4            | 8.5          | 5.9          |
| 3.4                  | 11.1         | 6.2        | 7.4          | 4.1<br>3.9 | 2.9        |            |       |       | 22.4         | 14.2         | 15.3         | 9.6          | 6.5          | 4.1<br>3.9 | 2.6        |            | <u>40.6</u><br>39.4 | 27.6<br>26.7 | 27.5         | 18.7<br>18.0 | 12.0<br>11.4 | 8.1<br>7.7   | 5.1<br>4.8   | 3.4        | 63.4         | 44.5         | 42.4         | 29.7         | 18.2<br>17.3 | 12.7<br>12.1    | 8.0<br>7.5   | 5.5          |
| 3.6                  | 10.5         | 5.8        | 6.9          | 3.8        | 2.6        |            |       |       | 21.0         | 13.4         | 14.7         | 9.0          | 5.9          | 3.7        | 2.3        |            | 38.1                | 25.9         | 25.5         | 17.3         | 10.8         | 7.7          | 4.6          | 3.0        | 58.9         | 41.3         | 38.9         | 27.3         | 16.5         | 11.5            | 7.5          | 4.9          |
| 3.7                  | 10.2         | 5.6        | 6.7          | 3.6        | 2.5        |            |       |       | 20.6         | 13.0         | 13.8         | 8.7          | 5.7          | 3.5        | 2.2        |            | 36.9                | 25.0         | 24.6         | 16.6         | 10.3         | 6.9          | 4.3          | 2.9        | 56.7         | 39.8         | 37.3         | 26.1         | 15.7         | 10.9            | 6.7          | 4.7          |
| 3.8                  | 9.9          | 5.5        | 6.4          | 3.5        | 2.4        |            |       |       | 20.0         | 12.6         | 13.3         | 8.4          | 5.4          | 3.3        | 2.0        |            | 35.7                | 24.2         | 23.6         | 16.0         | 9.8          | 6.6          | 4.1          | 2.7        | 54.7         | 38.4         | 35.8         | 25.1         | 14.9         | 10.4            | 6.4          | 4.4          |
| 3.9                  | 9.6          | 5.3        | 6.2          | 3.3        | 2.2        |            |       |       | 19.4         | 12.3         | 12.8         | 8.1          | 5.1          | 3.2        |            |            | 34.6                | 23.4         | 22.7         | 15.4         | 9.4          | 6.3          | 3.8          | 2.5        | 52.7         | 37.0         | 34.3         | 24.0         | 14.2         | 9.9             | 6.0          | 4.2          |
| 4.0<br>4.1           | 9.4<br>9.1   | 5.1<br>4.9 | 6.0<br>5.7   | 3.2        | 2.1        |            |       |       | 18.8<br>18.3 | 11.9<br>11.5 | 12.4<br>11.9 | 7.8<br>7.5   | 4.9<br>4.7   | 3.0<br>2.9 |            |            | 33.4<br>32.4        | 22.7<br>21.9 | 21.9<br>21.1 | 14.8<br>14.2 | 9.0<br>8.5   | 6.0<br>5.7   | 3.6<br>3.4   | 2.4        | 50.8<br>49.0 | 35.6<br>34.3 | 32.9<br>31.6 | 23.1<br>22.1 | 13.5<br>12.9 | 9.4<br>9.0      | 5.7<br>5.4   | 3.9<br>3.7   |
| 4.2                  | 8.8          | 4.8        | 5.5          | 2.9        |            |            |       |       | 17.7         | 11.2         | 11.5         | 7.3          | 4.4          | 2.7        |            |            | 31.3                | 21.7         | 20.3         | 13.7         | 8.2          | 5.5          | 3.4          | 2.3        | 47.0         | 33.1         | 30.4         | 21.2         | 12.3         | 8.6             | 5.1          | 3.5          |
| 4.3                  | 8.5          | 4.6        | 5.3          | 2.8        |            |            |       |       | 17.2         | 10.8         | 11.1         | 6.9          | 4.2          | 2.6        |            |            | 30.3                | 20.5         | 19.5         | 13.2         | 7.8          | 5.2          | 3.1          | 2.0        | 45.5         | 31.9         | 29.2         | 20.4         | 11.7         | 8.2             | 4.9          | 3.4          |
| 4.4                  | 8.2          | 4.4        | 5.1          | 2.7        |            |            |       |       | 16.7         | 10.5         | 10.7         | 6.7          | 4.0          | 2.4        |            |            | 29.3                | 19.8         | 18.8         | 12.7         | 7.4          | 5.0          | 2.9          |            | 43.9         | 30.8         | 28.0         | 19.6         | 11.2         | 7.8             | 4.6          | 3.2          |
| 4.5                  | 8.0          | 4.3        | 4.9          | 2.5        |            |            |       |       | 16.2         | 10.2         | 10.3         | 6.4          | 3.8          | 2.3        |            |            | 28.3                | 19.2         | 18.1         | 12.2         | 7.1          | 4.7          | 2.7          |            | 42.3         | 29.7         | 26.9         | 18.8         | 10.7         | 7.5             | 4.4          | 3.0          |
| 4.6<br>4.7           | 7.7<br>7.5   | 4.1<br>4.0 | 4.7<br>4.5   | 2.4        |            |            |       |       | 15.7<br>15.2 | 9.8<br>9.5   | 9.9<br>9.6   | 6.2<br>5.9   | 3.6<br>3.5   | 2.2<br>2.1 |            |            | 27.4<br>26.5        | 18.5<br>17.9 | 17.4<br>16.8 | 11.8<br>11.3 | 6.8<br>6.5   | 4.5<br>4.3   | 2.6<br>2.4   |            | 40.8<br>39.4 | 28.6<br>27.6 | 25.9<br>24.9 | 18.1<br>17.4 | 10.2<br>9.8  | 7.1<br>6.8      | 4.1<br>3.9   | 2.9          |
| 4.7                  | 7.5<br>7.2   | 3.8        | 4.3          | 2.3        |            |            |       |       | 14.7         | 9.5          | 9.0          | 5.7          | 3.3          | 2.1        |            |            | 25.7                | 17.9         | 16.2         | 10.9         | 6.2          | 4.3          | 2.4          |            | 38.1         | 26.7         | 24.9         | 16.8         | 9.6<br>9.4   | 6.5             | 3.7          | 2.7          |
| 4.9                  | 7.0          | 3.7        | 4.1          | 2.1        |            |            |       |       | 14.3         | 8.9          | 8.9          | 5.5          | 3.1          |            |            |            | 24.8                | 16.8         | 15.6         | 10.5         | 5.9          | 3.9          | 2.2          |            | 36.7         | 25.7         | 23.1         | 16.1         | 9.0          | 6.2             | 3.5          | 2.4          |
| 5.0                  | 6.7          | 3.5        | 3.9          |            |            |            |       |       | 13.8         | 8.6          | 8.6          | 5.3          | 3.0          |            |            |            | 24.0                | 16.2         | 15.0         | 10.1         | 5.6          | 3.7          | 2.0          |            | 35.5         | 24.8         | 22.2         | 15.5         | 8.6          | 6.0             | 3.4          | 2.3          |
| 5.1                  | 6.5          | 3.4        | 3.8          |            |            |            |       |       | 13.4         | 8.3          | 8.3          | 5.1          | 2.8          |            |            |            | 23.2                | 15.7         | 14.5         | 9.7          | 5.4          | 3.6          |              |            | 34.3         | 24.0         | 21.4         | 14.9         | 8.2          | 5.7             | 3.2          | 2.2          |
| 5.2                  | 6.3          | 3.2        | 3.6          |            |            |            |       |       | 13.0         | 8.1          | 8.0          | 4.9          | 2.7          |            |            |            | 22.5                | 15.2         | 14.0         | 9.4          | 5.1          | 3.4          |              |            | 33.1         | 23.2         | 20.6         | 14.4         | 7.9          | 5.4             | 3.0          | 2.1          |
| 5.3<br>5.4           | 6.0<br>5.8   | 3.1<br>2.9 | 3.4          |            |            |            |       |       | 12.6<br>12.2 | 7.8<br>7.5   | 7.7<br>7.4   | 4.7<br>4.5   | 2.5<br>2.4   |            |            |            | 21.8<br>21.1        | 14.7<br>14.2 | 13.5<br>13.0 | 9.0<br>8.7   | 4.9<br>4.7   | 3.2<br>3.1   |              |            | 32.0<br>30.9 | 22.4         | 19.9<br>19.1 | 13.9<br>13.4 | 7.5<br>7.2   | 5.2<br>5.0      | 2.9<br>2.7   |              |
| 5.5                  | 5.6          | 2.8        | 3.1          |            |            |            |       |       | 11.8         | 7.3          | 7.1          | 4.3          | 2.3          |            |            |            | 20.4                | 13.7         | 12.5         | 8.4          | 4.7          | 2.9          |              |            | 29.9         | 20.9         | 18.5         | 12.9         | 6.9          | 4.8             | 2.6          |              |
| 5.6                  | 5.4          | 2.7        | 3.0          |            |            |            |       |       | 11.4         | 7.0          | 6.8          | 4.1          | 2.1          |            |            |            | 19.7                | 13.3         | 12.1         | 8.1          | 4.3          | 2.8          |              |            | 28.9         | 20.2         | 17.8         | 12.4         | 6.6          | 4.6             | 2.5          |              |
| 5.7                  | 5.2          | 2.6        | 2.8          |            |            |            |       |       | 11.0         | 6.8          | 6.6          | 4.0          | 2.0          |            |            |            | 19.1                | 12.8         | 11.6         | 7.8          | 4.1          | 2.7          |              |            | 28.0         | 19.6         | 17.2         | 12.0         | 6.4          | 4.4             | 2.3          |              |
| 5.8                  | 5.0          | 2.4        | 2.7          |            |            |            |       |       | 10.7         | 6.6          | 6.3          | 3.8          |              |            |            |            | 18.5                | 12.4         | 11.2         | 7.5          | 3.9          | 2.5          |              |            | 27.1         | 18.9         | 16.6         | 11.5         | 6.1          | 4.2             | 2.2          |              |
| 5.9<br>6.0           | 4.8<br>4.6   | 2.3        | 2.5<br>2.4   |            |            |            |       |       | 10.3<br>10.0 | 6.3          | 6.1<br>5.8   | 3.6<br>3.5   |              |            |            |            | 17.9<br>17.3        | 12.0         | 10.8<br>10.4 | 7.2<br>7.0   | 3.7<br>3.6   | 2.4          |              |            | 26.2         | 18.3         | 16.0         | 11.1         | 5.8<br>5.6   | 4.0<br>3.8      | 2.1          |              |
| 0.U<br>• Those table |              |            |              |            |            |            |       |       |              | 6.1          |              | 3.3          |              |            |            |            | 17.3                | 11.6         |              |              |              |              |              |            | 25.4         | 17.7         | 15.4         | 10.7         |              | 3.8<br>00v4E bo |              |              |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

Note: Where design requirements are for the following sizes:- 100x50 - build in this size using 90x45 height / load data; 100x38 - build in this size using 90x35 height / load data; 75x50 - build in this size using 70x45 height / load data.

#### Selector+ PLASTERBOARD SYSTEMS

# Load Bearing Walls - Axial Load Capacity in kN/Stud

#### Timber Stud - Charfactor 22

|                                                                                         |                                                                                              | Tin                                                                                     | nber                                                                                      | Stre                                                                                    | ss G                                                                                    | rade                                          | F5                |           |                                                                                                      | Tin                                                                                          | nber                                                                                                 | Stre                                                                                               | ss G                                                                                        | rade                                                                             | F8                                                                                      |                                                             |                                                                                                      | Tim                                                                                                  | ber                                                                                                  | Stres                                                                                                | ss Gr                                                                                                | ade                                                                                              | F14                                                                                        |                                                                                         |                                                                                                      | Tim                                                                                                  | ber                                                                                          | Stres                                                                                                | ss Gr                                                                                                | ade                                                                                                  | F22                                                                                               |                                                                                             |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Wall                                                                                    |                                                                                              |                                                                                         | Stud                                                                                      | d size                                                                                  | (mmx                                                                                    | mm)                                           |                   |           |                                                                                                      |                                                                                              | Stud                                                                                                 | d size                                                                                             | (mmx                                                                                        | mm)                                                                              |                                                                                         |                                                             |                                                                                                      |                                                                                                      | Stu                                                                                                  | d size                                                                                               | (mmxi                                                                                                | mm)                                                                                              |                                                                                            |                                                                                         |                                                                                                      |                                                                                                      | Stu                                                                                          | d size                                                                                               | (mmx                                                                                                 | mm)                                                                                                  |                                                                                                   |                                                                                             |
| Height (m)                                                                              | 140x45                                                                                       | 140x35                                                                                  | 120x45                                                                                    | 120x35                                                                                  | 90x45                                                                                   | 90x35                                         | 70x45             | 70x35     | 140x45                                                                                               | 140x35                                                                                       | 120x45                                                                                               | 120x35                                                                                             | 90x45                                                                                       | 90x35                                                                            | 70x45                                                                                   | 70x35                                                       | 140x45                                                                                               | 140x35                                                                                               | 120x45                                                                                               | 120x35                                                                                               | 90x45                                                                                                | 90x35                                                                                            | 70x45                                                                                      | 70x35                                                                                   | 140x45                                                                                               | 140x35                                                                                               | 120x45                                                                                       | 120x35                                                                                               | 90x45                                                                                                | 90x35                                                                                                | 70x45                                                                                             | 70x35                                                                                       |
| 2.0<br>2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.1<br>3.2 | 14.2<br>14.0<br>13.7<br>13.4<br>13.2<br>12.9<br>12.6<br>12.3<br>12.0<br>11.8<br>11.5<br>11.2 | 7.9<br>7.7<br>7.6<br>7.4<br>7.2<br>7.1<br>6.9<br>6.7<br>6.5<br>6.4<br>6.2<br>6.0<br>5.9 | 10.5<br>10.2<br>9.9<br>9.7<br>9.4<br>9.2<br>8.9<br>8.6<br>8.4<br>8.1<br>7.8<br>7.6<br>7.3 | 5.7<br>5.6<br>5.4<br>5.3<br>5.1<br>5.0<br>4.8<br>4.7<br>4.5<br>4.3<br>4.2<br>4.0<br>3.9 | 5.2<br>5.0<br>4.8<br>4.6<br>4.4<br>4.2<br>4.0<br>3.8<br>3.6<br>3.4<br>3.3<br>3.1<br>2.9 | 2.8<br>2.7<br>2.6<br>2.5<br>2.3<br>2.2<br>2.1 | 2.4<br>2.2<br>2.1 |           | 29.4<br>28.8<br>28.3<br>27.7<br>27.1<br>26.6<br>26.0<br>25.4<br>24.8<br>24.2<br>23.6<br>23.0<br>22.4 | 18.5<br>18.2<br>17.8<br>17.4<br>17.1<br>16.7<br>16.3<br>15.9<br>15.5<br>15.2<br>14.8<br>14.4 | 22.0<br>21.4<br>20.9<br>20.3<br>19.8<br>19.2<br>18.6<br>18.1<br>17.5<br>17.0<br>16.5<br>15.9<br>15.4 | 13.8<br>13.5<br>13.1<br>12.8<br>12.4<br>12.0<br>11.7<br>11.3<br>11.0<br>10.6<br>10.3<br>9.9<br>9.6 | 11.5<br>11.1<br>10.6<br>10.2<br>9.7<br>9.3<br>8.9<br>8.5<br>8.1<br>7.7<br>7.4<br>7.0<br>6.7 | 7.2<br>6.9<br>6.6<br>6.3<br>6.0<br>5.8<br>5.5<br>5.3<br>5.0<br>4.8<br>4.5<br>4.3 | 5.7<br>5.3<br>5.0<br>4.7<br>4.5<br>4.2<br>4.0<br>3.7<br>3.5<br>3.3<br>3.1<br>2.9<br>2.7 | 3.5<br>3.3<br>3.1<br>2.9<br>2.7<br>2.6<br>2.4<br>2.3<br>2.1 | 57.8<br>56.5<br>55.2<br>53.8<br>52.5<br>51.1<br>49.7<br>48.4<br>47.0<br>45.7<br>44.3<br>43.0<br>41.7 | 39.1<br>38.2<br>37.3<br>36.4<br>35.4<br>34.5<br>33.6<br>32.6<br>31.7<br>30.8<br>29.9<br>29.0<br>28.1 | 43.3<br>42.0<br>40.7<br>39.4<br>38.1<br>36.8<br>35.6<br>34.3<br>33.1<br>31.9<br>30.8<br>29.6<br>28.5 | 29.2<br>28.3<br>27.5<br>26.6<br>25.7<br>24.8<br>24.0<br>23.1<br>22.3<br>21.5<br>20.7<br>19.9<br>19.2 | 22.8<br>21.8<br>20.7<br>19.7<br>18.8<br>17.9<br>17.0<br>16.1<br>15.4<br>14.6<br>13.9<br>13.2<br>12.6 | 15.3<br>14.6<br>13.9<br>13.2<br>12.6<br>12.0<br>11.4<br>10.8<br>10.3<br>9.8<br>9.3<br>8.8<br>8.4 | 11.5<br>10.8<br>10.1<br>9.5<br>8.9<br>8.3<br>7.8<br>7.4<br>6.9<br>6.5<br>6.1<br>5.8<br>5.4 | 7.7<br>7.2<br>6.7<br>6.3<br>5.9<br>5.6<br>5.2<br>4.9<br>4.6<br>4.3<br>4.1<br>3.8<br>3.6 | 99.0<br>96.2<br>93.4<br>90.5<br>87.7<br>84.9<br>82.1<br>79.3<br>76.6<br>73.9<br>71.3<br>68.8<br>66.3 | 69.3<br>67.3<br>65.3<br>63.3<br>61.3<br>59.3<br>57.3<br>55.4<br>53.5<br>51.6<br>49.8<br>48.0<br>46.3 | 73.4<br>70.7<br>68.0<br>65.4<br>62.8<br>60.3<br>57.8<br>55.4<br>53.1<br>50.9<br>48.7<br>46.7 | 51.3<br>49.4<br>47.5<br>45.6<br>43.8<br>42.0<br>40.3<br>38.6<br>37.0<br>35.5<br>34.0<br>32.5<br>31.2 | 38.0<br>35.9<br>33.9<br>32.1<br>30.3<br>28.6<br>27.1<br>25.6<br>24.2<br>22.9<br>21.7<br>20.6<br>19.5 | 26.4<br>25.0<br>23.6<br>22.3<br>21.1<br>19.9<br>18.8<br>17.8<br>16.8<br>15.9<br>15.1<br>14.3<br>13.5 | 19.0<br>17.7<br>16.5<br>15.4<br>14.3<br>13.4<br>12.5<br>11.7<br>11.0<br>10.3<br>9.7<br>9.1<br>8.6 | 13.1<br>12.2<br>11.4<br>10.6<br>9.9<br>9.3<br>8.7<br>8.1<br>7.6<br>7.1<br>6.7<br>6.3<br>5.9 |
| 3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9<br>4.0                             | 10.6<br>10.3<br>10.0<br>9.7<br>9.4<br>9.2<br>8.9                                             | 5.7<br>5.5<br>5.3<br>5.2<br>5.0<br>4.8<br>4.7<br>4.5                                    | 7.1<br>6.8<br>6.6<br>6.4<br>6.1<br>5.9<br>5.7                                             | 3.7<br>3.6<br>3.4<br>3.3<br>3.2<br>3.0<br>2.9<br>2.8                                    | 2.8<br>2.6<br>2.5<br>2.4<br>2.2<br>2.1                                                  |                                               |                   |           | 21.8<br>21.2<br>20.6<br>20.1<br>19.5<br>18.9<br>18.4                                                 | 13.6<br>13.2<br>12.9<br>12.5<br>12.1<br>11.8<br>11.4                                         | 14.9<br>14.4<br>13.9<br>13.4<br>13.0<br>12.5<br>12.1                                                 | 9.3<br>8.9<br>8.6<br>8.3<br>8.0<br>7.7<br>7.4<br>7.2                                               | 6.4<br>6.1<br>5.8<br>5.5<br>5.3<br>5.0<br>4.8                                               | 3.9<br>3.7<br>3.5<br>3.4<br>3.2<br>3.0<br>2.9<br>2.7                             | 2.6<br>2.4<br>2.3<br>2.1                                                                |                                                             | 40.4<br>39.1<br>37.9<br>36.7<br>35.5<br>34.4<br>33.3<br>32.2                                         | 27.2<br>26.3<br>25.5<br>24.7<br>23.9<br>23.1<br>22.3<br>21.6                                         | 27.5<br>26.4<br>25.5<br>24.5<br>23.6<br>22.7<br>21.8<br>21.0                                         | 18.4<br>17.8<br>17.1<br>16.4<br>15.8<br>15.2<br>14.6                                                 | 12.0<br>11.4<br>10.8<br>10.3<br>9.8<br>9.4<br>8.9                                                    | 8.0<br>7.6<br>7.2<br>6.9<br>6.5<br>6.2<br>5.9                                                    | 5.1<br>4.8<br>4.5<br>4.3<br>4.0<br>3.8<br>3.6                                              | 3.4<br>3.2<br>3.0<br>2.8<br>2.7<br>2.5<br>2.4                                           | 63.9<br>61.6<br>59.4<br>57.2<br>55.1<br>53.1<br>51.2<br>49.3                                         | 44.6<br>43.0<br>41.4<br>39.9<br>38.4                                                                 | 42.8<br>41.0<br>39.3<br>37.7<br>36.1<br>34.7<br>33.3<br>31.9                                 | 29.8<br>28.6<br>27.4<br>26.2<br>25.2                                                                 | 18.5<br>17.6<br>16.7<br>15.9<br>15.1<br>14.4<br>13.7                                                 | 12.8<br>12.2<br>11.6<br>11.0<br>10.5<br>10.0<br>9.5                                                  | 8.1<br>7.6<br>7.2<br>6.8<br>6.4<br>6.1<br>5.7                                                     | 5.6<br>5.3<br>5.0<br>4.7<br>4.4<br>4.2<br>4.0                                               |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8                                    | 8.4<br>8.1<br>7.8<br>7.6<br>7.3<br>7.1<br>6.8<br>6.6                                         | 4.3<br>4.2<br>4.0<br>3.9<br>3.7<br>3.6<br>3.4<br>3.3                                    | 5.2<br>5.0<br>4.8<br>4.6<br>4.4<br>4.2<br>4.1<br>3.9                                      | 2.6<br>2.5<br>2.4<br>2.3<br>2.2<br>2.1                                                  |                                                                                         |                                               |                   |           | 17.3<br>16.8<br>16.3<br>15.8<br>15.3<br>14.8<br>14.4<br>13.9                                         | 10.7<br>10.4<br>10.1<br>9.7<br>9.4<br>9.1<br>8.8<br>8.5                                      | 11.2<br>10.8<br>10.4<br>10.1<br>9.7<br>9.3<br>9.0<br>8.7                                             | 6.9<br>6.6<br>6.4<br>6.2<br>5.9<br>5.7<br>5.5<br>5.3                                               | 4.3<br>4.1<br>3.9<br>3.7<br>3.5<br>3.4<br>3.2<br>3.0                                        | 2.6<br>2.5<br>2.3<br>2.2<br>2.1                                                  |                                                                                         |                                                             | 31.1<br>30.1<br>29.1<br>28.2<br>27.3<br>26.4<br>25.5<br>24.7                                         | 20.9<br>20.2<br>19.5<br>18.9<br>18.3<br>17.7<br>17.1<br>16.5                                         | 20.2<br>19.5<br>18.7<br>18.0<br>17.4<br>16.7<br>16.1<br>15.5                                         | 13.5<br>13.0<br>12.5<br>12.1<br>11.6<br>11.2<br>10.7                                                 | 8.1<br>7.7<br>7.4<br>7.1<br>6.7<br>6.4<br>6.1<br>5.9                                                 | 5.4<br>5.1<br>4.9<br>4.7<br>4.4<br>4.2<br>4.0<br>3.8                                             | 3.2<br>3.0<br>2.9<br>2.7<br>2.5<br>2.4<br>2.3<br>2.1                                       | 2.1                                                                                     | 47.5<br>45.8<br>44.2<br>42.6<br>41.1<br>39.7<br>38.3<br>37.0                                         | 33.1<br>31.9<br>30.8<br>29.7<br>28.6<br>27.6<br>26.6<br>25.7                                         | 30.6<br>29.4<br>28.2<br>27.1<br>26.1<br>25.1<br>24.1<br>23.2                                 | 21.3<br>20.5<br>19.6<br>18.9<br>18.1<br>17.4<br>16.8<br>16.1                                         | 12.4<br>11.9<br>11.3<br>10.8<br>10.3<br>9.9<br>9.4<br>9.0                                            | 8.6<br>8.2<br>7.8<br>7.5<br>7.1<br>6.8<br>6.5<br>6.2                                                 | 5.2<br>4.9<br>4.6<br>4.4<br>4.2<br>3.9<br>3.7<br>3.6                                              | 3.5<br>3.3<br>3.2<br>3.0<br>2.8<br>2.7<br>2.6<br>2.4                                        |
| 4.8<br>4.9<br>5.0<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                                    | 6.4<br>6.1<br>5.9<br>5.7<br>5.5<br>5.3                                                       | 3.3<br>3.2<br>3.0<br>2.9<br>2.8<br>2.6<br>2.5                                           | 3.7<br>3.5<br>3.4<br>3.2<br>3.1<br>2.9<br>2.8                                             |                                                                                         |                                                                                         |                                               |                   |           | 13.5<br>13.1<br>12.7<br>12.3<br>11.9<br>11.5                                                         | 8.3<br>8.0<br>7.7<br>7.5<br>7.2<br>7.0                                                       | 8.4<br>8.0<br>7.7<br>7.5<br>7.2<br>6.9                                                               | 5.5<br>5.1<br>4.9<br>4.7<br>4.5<br>4.3<br>4.1<br>3.9                                               | 2.9<br>2.7<br>2.6<br>2.4<br>2.3<br>2.2<br>2.1                                               |                                                                                  |                                                                                         |                                                             | 23.9<br>23.1<br>22.4<br>21.6<br>20.9<br>20.3<br>19.6                                                 | 16.5<br>16.0<br>15.4<br>14.9<br>14.4<br>14.0<br>13.5                                                 | 13.3<br>15.0<br>14.4<br>13.9<br>13.4<br>12.9<br>12.4                                                 | 9.6<br>9.2<br>8.9<br>8.6<br>8.2                                                                      | 5.9<br>5.6<br>5.3<br>5.1<br>4.9<br>4.7<br>4.4<br>4.2                                                 | 3.5<br>3.5<br>3.3<br>3.2<br>3.0<br>2.9<br>2.7                                                    | 2.0                                                                                        |                                                                                         | 35.7<br>34.5<br>33.3<br>32.2<br>31.1<br>30.0<br>29.0                                                 | 24.8<br>24.0<br>23.1<br>22.4<br>21.6<br>20.9<br>20.2                                                 | 23.2<br>22.3<br>21.5<br>20.7<br>20.0<br>19.2<br>18.5                                         | 15.5<br>14.9<br>14.4<br>13.8<br>13.3<br>12.8                                                         | 7.0<br>8.6<br>8.2<br>7.9<br>7.6<br>7.2<br>6.9                                                        | 5.2<br>5.9<br>5.7<br>5.4<br>5.2<br>5.0<br>4.8<br>4.6                                                 | 3.4<br>3.2<br>3.0<br>2.9<br>2.7<br>2.6<br>2.5                                                     | 2.3 2.2 2.1                                                                                 |
| 5.6<br>5.7<br>5.8<br>5.9<br>6.0                                                         | 4.9<br>4.7<br>4.5<br>4.3<br>4.1                                                              | 2.3<br>2.2<br>2.0                                                                       | 2.6<br>2.5<br>2.4<br>2.2<br>2.1                                                           | nction v                                                                                | vith Sec                                                                                | tions A                                       | 5. A6 &           | A8 and no | 10.8<br>10.4<br>10.1<br>9.7<br>9.4                                                                   | 6.5<br>6.3<br>6.1<br>5.8<br>5.6                                                              | 6.4<br>6.1<br>5.9<br>5.7<br>5.5                                                                      | 3.8<br>3.6<br>3.5<br>3.3<br>3.2                                                                    |                                                                                             |                                                                                  |                                                                                         |                                                             | 19.0<br>18.4<br>17.8<br>17.2<br>16.7                                                                 | 12.6<br>12.2<br>11.8<br>11.4<br>11.1                                                                 | 11.6<br>11.1<br>10.7<br>10.4<br>10.0                                                                 | 7.6<br>7.4<br>7.1<br>6.8<br>6.6                                                                      | 4.0<br>3.9<br>3.7<br>3.5<br>3.4                                                                      | 2.6<br>2.5<br>2.4<br>2.2<br>2.1                                                                  | re for the                                                                                 | e followin                                                                              | 28.1<br>27.2<br>26.3<br>25.4<br>24.6                                                                 | 19.5<br>18.9<br>18.2<br>17.6<br>17.1                                                                 | 17.2<br>16.6<br>16.0<br>15.5<br>14.9                                                         | 11.9<br>11.5<br>11.1<br>10.7<br>10.3                                                                 | 6.4<br>6.1<br>5.8<br>5.6<br>5.4                                                                      | 4.4<br>4.2<br>4.0<br>3.8<br>3.7                                                                      | 2.3<br>2.2<br>2.1                                                                                 | ad data:                                                                                    |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pages C3.1 - C3.3

 $\begin{tabular}{ll} \textbf{Note:} Where design requirements are for the following sizes:- $100x50$ - build in this size using $90x45$ height / load data; $75x50$ - build in this size using $90x45$ height / load data; $75x50$ - build in this size using $70x45$ height / load data. $100x45$ - $100x450$ - $100x4500$ - $100x4500$ - $100x4500$ - $100x4500$ - $100x4500$ - $100x4500$ -$ 

# C4 | Ceiling Span Tables

### **Notes to Tables**

### Horizontal Shaft Wall Ceilings

- Maximum working stress of steel taken as 80MPa for fire service
- System assumed to have 1 layer of 25mm Shaftliner™ on top and 3 layers of 16mm Firestop® underneath
- · Does not apply to the inverted Horizontal Shaft Wall system
- Spans are centre to centre and analysis assumes the section to be laterally restrained
- The studs are assumed to be simply supported and the ceiling is assumed to be non trafficable and not subject to any loading from construction or maintenance personnel.

### **Spanning C Section Ceilings**

- · Non trafficable ceiling
- All connections where spanning ceiling section abuts a wall should be Rondo web cleat SWC3.

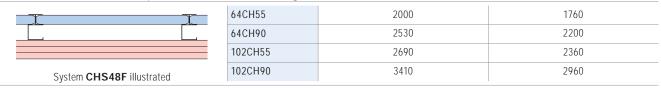
## Spanning D-Span<sup>™</sup> Ceilings

 Spans calculated based on self weight of plasterboard and joist members.

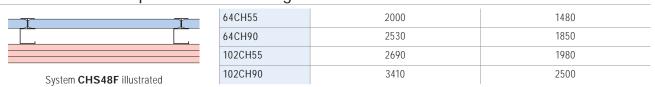
### Dead Load Only (no plenum space)

- The design pressure acting on the ceiling membrane is NIL Pa. Max deflection span/500 under design loading
- Allowance has also been made for additional incidental dead loads of 5kg/m<sup>2</sup>.

### 250Pa Design Pressure (no plenum space)


- The design pressure acting on the ceiling membrane is 250Pa
- Max deflection span/360 under design loading.

# **Horizontal Shaft Wall**


# Horizontal Shaft Wall - Maximum Ceiling Spans (mm)

|        | FRL     | Up to 120   | 0/120/120   |  |  |
|--------|---------|-------------|-------------|--|--|
|        |         | Maximum Fra | ame Centres |  |  |
| Layout | Section | 300mm 600mm |             |  |  |

# Maximum Pressure plus 600Pa self weight: 0.00kPa



# Maximum Pressure plus 600Pa self weight: 0.25kPa



# **Spanning Ceilings**

# Spanning Ceilings With 150CS75 Joists at 600mm max ctrs - Max Ceiling Spans (mm)

| Layout                     | System Ref | Description                                          | Point Load at<br>Midspan (N) | Max Span |
|----------------------------|------------|------------------------------------------------------|------------------------------|----------|
|                            | CSP1616F   | 1x16mm FireSTOP pbd                                  | 1400                         | 2000     |
|                            |            | above<br>1x16mm FireSTOP pbd<br>below                | 900                          | 3000     |
|                            | CSP2613F   | 2x13mm FireSTOP pbd                                  | 1400                         | 2000     |
|                            |            | above<br>1x13mm FireSTOP pbd<br>below                | 900                          | 2900     |
| _                          | CSP3216F10 | 2x16mm FireSTOP pbd                                  | 1400                         | 1900     |
|                            |            | above 1x16mm FireSTOP plus 1x10mm Std Core pbd below | 900                          | 2650     |
|                            | CSP5016F   | 2x25mm ShaftLINER pbd                                | 1400                         | 1900     |
| System CS3232F illustrated |            | above<br>1x16mm FireSTOP pbd<br>below                | 900                          | 2600     |
|                            | CSP3232F   | 2x16mm FireSTOP pbd                                  | 1400                         | 1900     |
|                            |            | above<br>2x16mm FireSTOP pbd<br>below                | 900                          | 2650     |
|                            | CSP3248F   | 2x16mm FireSTOP pbd                                  | 1400                         | 1850     |
|                            |            | above 3x16mm FireSTOP pbd below                      | 900                          | 2500     |

# **Selector+** PLASTERBOARD SYSTEMS

# Maximum Ceiling Spans - Horizontal D-Span™

| Lining (no of layers x thickness in mm) | Lining (no of layers x thickness in mm) |         |  | 1 x 13                     | 1 x 16 | 13/16    | 2 x 13   | 2 x 16 | 3 x 16 | 1 x 10 | 1 x 13 | 1 x 16 | 13/16   | 2 x 13  | 2 x 16 | 3 x 16 |
|-----------------------------------------|-----------------------------------------|---------|--|----------------------------|--------|----------|----------|--------|--------|--------|--------|--------|---------|---------|--------|--------|
|                                         | FRL                                     |         |  | Up to 120/90/90 from below |        |          |          |        |        |        |        |        |         |         |        |        |
| Layout                                  | Brand                                   | Section |  | 450                        | mm Max | imum Fra | ime Cent | res    |        |        | 600    | mm Max | imum Fr | ame Cen | tres   |        |

# Dead Load Only (no plenum space): 0.00kPa



System CD29F illustrated

| Bluescope            | 61DS75  | 3270 | 3070 | 2910 | 2550 | 2640 | 2470 | 2220 | 3010 | 2820 | 2670 | 2330 | 2420 | 2260 | 2020 |
|----------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 61 Topspan           | 61DS100 | 3520 | 3320 | 3160 | 2780 | 2880 | 2700 | 2430 | 3270 | 3070 | 2910 | 2550 | 2640 | 2470 | 2220 |
|                      | 64DS75  | 3360 | 3160 | 3000 | 2630 | 2720 | 2550 | 2280 | 3090 | 2900 | 2750 | 2400 | 2490 | 2330 | 2080 |
| Stramit 64<br>batten | 64DS100 | 3710 | 3500 | 3330 | 2940 | 3030 | 2850 | 2560 | 3440 | 3230 | 3070 | 2690 | 2790 | 2610 | 2340 |
| Darron.              | 64DS120 | 3920 | 3710 | 3530 | 3130 | 3230 | 3030 | 2730 | 3640 | 3430 | 3260 | 2870 | 2970 | 2790 | 2500 |
|                      | 96DS75  | 4600 | 4340 | 4130 | 3630 | 3760 | 3530 | 3170 | 4220 | 4010 | 3800 | 3330 | 3450 | 3230 | 2900 |
| Stramit 96<br>batten | 96DS100 | 5050 | 4780 | 4560 | 4040 | 4170 | 3920 | 3530 | 4790 | 4430 | 4220 | 3710 | 3840 | 3600 | 3240 |
| Darron.              | 96DS120 | 5310 | 5040 | 4820 | 4290 | 4420 | 4170 | 3770 | 4960 | 4690 | 4470 | 3950 | 4080 | 3840 | 3460 |
| Bluescope            | 120DS70 | 5880 | 5560 | 5310 | 4700 | 4850 | 4560 | 4110 | 5470 | 5150 | 4900 | 4320 | 4460 | 4190 | 3760 |
| 120 Topspan          | 120DS90 | 6240 | 5920 | 5660 | 5040 | 5200 | 4900 | 4430 | 5840 | 5520 | 5260 | 4650 | 4800 | 4510 | 4070 |
|                      |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

# Maximum Pressure (no plenum space): 0.25kPa



System CD29F illustrated

| Bluescope            | 61DS75  | 2730 | 2660 | 2590 | 2410 | 2460 | 2360 | 2200 | 2500 | 2430 | 2370 | 2200 | 2240 | 2150 | 2000 |
|----------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 61 Topspan           | 61DS100 | 2980 | 2900 | 2830 | 2630 | 2690 | 2590 | 2410 | 2730 | 2660 | 2590 | 2410 | 2460 | 2360 | 2200 |
|                      | 64DS75  | 2810 | 2740 | 2670 | 2480 | 2530 | 2430 | 2260 | 2570 | 2500 | 2440 | 2260 | 2310 | 2220 | 2060 |
| Stramit 64<br>batten | 64DS100 | 3150 | 3060 | 2990 | 2780 | 2840 | 2730 | 2540 | 2890 | 2810 | 2740 | 2540 | 2600 | 2490 | 2320 |
| Datton               | 64DS120 | 3360 | 3270 | 3190 | 2970 | 3030 | 2920 | 2720 | 3080 | 3000 | 2920 | 2720 | 2780 | 2670 | 2480 |
|                      | 96DS75  | 3900 | 3790 | 3700 | 3440 | 3510 | 3380 | 3150 | 3570 | 3470 | 3390 | 3150 | 3210 | 3090 | 2870 |
| Stramit 96 batten    | 96DS100 | 4330 | 4220 | 4120 | 3840 | 3920 | 3770 | 3520 | 3980 | 3870 | 3780 | 3520 | 3590 | 3450 | 3210 |
| Datton               | 96DS120 | 4610 | 4490 | 4390 | 4100 | 4180 | 4020 | 3760 | 4240 | 4130 | 4030 | 3760 | 3830 | 3690 | 3440 |
| Bluescope            | 120DS70 | 5040 | 4910 | 4790 | 4470 | 4560 | 4390 | 4090 | 4630 | 4510 | 4330 | 4090 | 4170 | 4010 | 3740 |
| 120 Topspan          | 120DS90 | 5420 | 5290 | 5160 | 4820 | 4910 | 4730 | 4420 | 4990 | 4860 | 4740 | 4420 | 4510 | 4340 | 4040 |

<sup>•</sup> These tables should be read in conjunction with Sections A5, A6 & A8 and notes on pg C4.1 • For steel section design refer Section A1

This page left blank intentionally.

Shelf Load Tables

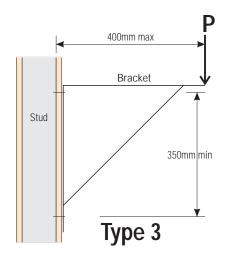
# C5 | Shelf Load Tables

# Permissible Shelf Loadings For Steel Stud Walls

|                                    |           |          | Maxi     | mum All | owable | Load in  | kg Per S | tud Per | Shelf (Fo | or faster | ners des | igned by | y Structi | ural Eng | ineer)   |     |
|------------------------------------|-----------|----------|----------|---------|--------|----------|----------|---------|-----------|-----------|----------|----------|-----------|----------|----------|-----|
| Wall Height (mm)                   |           |          | 2400     |         |        | 2700     |          |         | 3000      |           |          | 3300     |           | 3600     |          |     |
| Rondo Stud Size                    |           | 64       | x 0.55 B | MT      | 64     | x 0.55 B | MT       | 64      | x 0.55 B  | MT        | 76       | x 0.55 B | MT        | 92       | x 0.55 B | MT  |
| Shelf Width (mm)                   |           | 200      | 300      | 400     | 200    | 300      | 400      | 200     | 300       | 400       | 200      | 300      | 400       | 200      | 300      | 400 |
|                                    | 1         | 90       | 77       | 63      | 75     | 60       | 49       | 56      | 44        | 36        | 72       | 58       | 48        | 86       | 78       | 65  |
|                                    | 2         | 61       | 48       | 44      | 47     | 39       | 37       | 18      | 13        | 10        | 28       | 19       | 15        | 58       | 50       | 43  |
| Number of Shelves                  | 3         | 45       | 38       | 30      | 38     | 30       | 25       | 12      | 8         | 6.8       | 17       | 12       | 10        | 43       | 39       | 32  |
| Equally Spaced<br>Over Full Height | 4         | 34       | 29       | 25      | 26     | 24       | 18       | 9       | 6         | 4.5       | 12       | 9        | 7         | 32       | 28       | 26  |
|                                    | 5         | 30       | 25       | 20      | 25     | 19       | 15       | 7       | 5         | 4         | 10       | 7        | 5         | 28       | 24       | 21  |
|                                    | 6         | 24       | 22       | 18      | 19     | 15       | 12       | 6       | 4         | 3         | 8        | 6        | 4.5       | 23       | 21       | 18  |
| Load Multiplication Fa             | actor For | Alternat | ive Stud | Sizes   |        |          |          |         |           |           |          |          |           |          |          |     |
| 64 x 0.75 BMT                      |           |          | 1.33     |         |        | 1.33     |          |         | 1.33      |           |          | NA       |           |          | NA       |     |
| 76 x 0.55 BMT                      |           |          | 1.09     |         |        | 1.09     |          |         | 1.09      |           |          | 1.00     |           |          | NA       |     |
| 76 x 0.75 BMT                      |           |          | 1.46     |         |        | 1.46     |          |         | 1.46      |           |          | 1.34     |           |          | NA       |     |
| 92 x 0.55 BMT                      |           |          | 1.19     |         |        | 1.19     |          |         | 1.19      |           |          | 1.10     |           |          | 1.00     |     |
| 92 x 0.75 BMT                      |           |          | 1.61     |         |        | 1.61     |          |         | 1.61      |           |          | 1.48     |           |          | 1.34     |     |

# **Permissible Shelf Loadings For Steel Stud Walls**

|                                      |   | 1    |                                                                                                 | J   | <u></u> |          |     |     |          |     |      |          |     |
|--------------------------------------|---|------|-------------------------------------------------------------------------------------------------|-----|---------|----------|-----|-----|----------|-----|------|----------|-----|
|                                      |   |      | Maximum Allowable Load in kg Per Stud Per Shelf (For fasteners designed by Structural Engineer) |     |         |          |     |     |          |     |      |          |     |
| Wall Height (mm)                     |   | 4200 |                                                                                                 |     |         | 4800     |     |     | 5400     |     | 6000 |          |     |
| Rondo Stud Size                      |   | 150  | x 0.75 E                                                                                        | BMT | 150     | x 0.75 E | BMT | 150 | x 0.75 B | SMT | 150  | x 1.15 B | BMT |
| Shelf Width (mm)                     |   | 200  | 200 300 400                                                                                     |     |         | 300      | 400 | 200 | 300      | 400 | 200  | 300      | 400 |
|                                      | 1 | 280  | 230                                                                                             | 200 | 220     | 185      | 160 | 85  | 62       | 50  | 57   | 44       | 35  |
|                                      | 2 | 165  | 140                                                                                             | 120 | 120     | 100      | 90  | 46  | 33       | 27  | 30   | 23       | 18  |
| Number of Shelves                    | 3 | 124  | 105                                                                                             | 90  | 85      | 75       | 65  | 32  | 24       | 19  | 20   | 15       | 12  |
| Equally Spaced<br>Over Bottom 3600mm | 4 | 100  | 78                                                                                              | 62  | 70      | 60       | 50  | 25  | 18       | 14  | 16   | 12       | 9   |
|                                      | 5 | 80   | 60                                                                                              | 50  | 59      | 50       | 45  | 20  | 15       | 12  | 13   | 9        | 7   |
|                                      | 6 | 70   | 50                                                                                              | 40  | 50      | 43       | 37  | 17  | 13       | 10  | 11   | 8        | 6   |


#### **Design Assumptions:**

- Stud spacing = 600mm
- Deflection limit = span/480
- Walls are lined both sides with 13mm Boral Plasterboard
- Studs are continuous in length

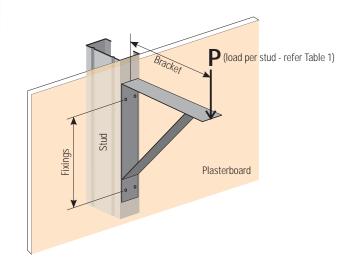
- Lateral load = 0.25kPa
- · All calculations are based on Rondo sections
- · Shelving is attached to one side of the wall only
- Non fire rated wall systems only.

# » Shelf Load Tables





Max Loading "P" per Stud (kg) (Where fasteners consist of 2x10 gauge fasteners at each fixing location)


| Stud Thickness<br>BMT (mm) | Type 1 Bracket<br>(kg) | Type 2 Bracket<br>(kg) | Type 3 Bracket<br>(kg) |
|----------------------------|------------------------|------------------------|------------------------|
| 0.55                       | 19.6                   | 23.3                   | 25.4                   |
| 0.75                       | 31.1                   | 37.8                   | 41.7                   |
| 1.15                       | 53.9                   | 65.5                   | 72.1                   |

#### Note:

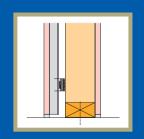
- Fixings shown in above diagrams consist of 2# 10 gauge fasteners at each fixing location
- Design is for bracket connection only, bracket and shelf design by others
- Loads greater than those listed above must be independantly
- Fasteners used must be 10 gauge and have the properties listed in the table below.

#### Properties For 10 Gauge Fasteners

| Stud Gauge BMT<br>(mm) | Pull-out Force (kN)<br>(F of S = 3) | Shear Strength (kN)<br>(F of S = 3) |
|------------------------|-------------------------------------|-------------------------------------|
| 0.55                   | 0.18                                | 0.84                                |
| 0.75                   | 0.32                                | 1.15                                |
| 1.15                   | 0.56                                | 1.76                                |



# **D** Installation Details


| D1   General  |
|---------------|
| D2   Walls    |
| D3   Ceilings |
|               |

**D4** | Reference









# **D** | Contents

# D1 | General

| Installation and Fastening Sequence for Steel Studs | D1.1 |
|-----------------------------------------------------|------|
| Fastener Selection                                  | D1.3 |

# D2 | Walls

| Wall Construction Notes                                       | D2.1  |
|---------------------------------------------------------------|-------|
| Fire Rated Steel Framed Walls - Plasterboard Installation     | D2.2  |
| Fire Rated Steel Framed Walls - Terminals and Junctions       | D2.5  |
| Fire Rated Steel Framed Walls - Base Details                  | D2.8  |
| Fire Rated Steel Framed Walls - Head Details                  | D2.9  |
| Fire Rated Steel Framed Walls - Control / Movement Joints     | D2.11 |
| Fire Rated Steel Framed Walls - Door Details                  | D2.13 |
| Fire Rated Steel Framed Walls - Plumbing Penetrations         | D2.14 |
| Fire Rated Steel Framed Walls - Electrical Penetrations       | D2.17 |
| Fire Rated Steel Framed Walls - HVAC Penetrations             | D2.20 |
| Fire Rated Steel Framed Walls - Access Panel                  | D2.22 |
| Non Fire Rated Steel Framed Walls - Plasterboard Installation | D2.23 |
| Non Fire Rated Steel Framed Walls - Base Details              | D2.25 |
| Non Fire Rated Steel Framed Walls - Head Details              | D2.26 |
| Non Fire Rated Steel Framed Walls - Control Joints            | D2.27 |
| Non Fire Rated Steel Framed Walls - Back-blocking             | D2.28 |
| Door Details - Non Fire Rated Steel Framed Walls              | D2.28 |
| Non Fire Rated Steel Framed Walls - Plumbing Penetrations     | D2.29 |
| Fire Rated Timber Framed Walls - Plasterboard Installation    | D2.31 |
| Fire Rated Timber Framed Walls - Wall Junctions               | D2.34 |
| Fire Rated Timber Framed Walls - Base Detail                  | D2.37 |
| Fire Rated Timber Framed Walls - Head Details                 | D2.38 |
| Fire Rated Timber Framed Walls - Plumbing Penetrations        | D2.39 |
| Fire Rated Timber Framed Walls - Acoustic Details             | D2.40 |
|                                                               |       |

# D3 | Ceilings

| Ceiling Construction Notes                               | D3.1  |
|----------------------------------------------------------|-------|
| Fire Rated Ceilings - Plasterboard Installation          | D3.3  |
| Fire Rated Ceilings - Back-blocking                      | D3.4  |
| Fire Rated Ceilings - Perimeter                          | D3.5  |
| Fire Rated Ceilings - Bulkhead                           | D3.8  |
| Fire Rated Ceilings - Movement / Control Joints          | D3.9  |
| Fire Rated Ceilings - Lights                             | D3.10 |
| Fire Rated Ceilings - Electrical and Loaded Penetrations | D3.11 |
| Fire Rated Ceilings - Beam Protection                    | D3.13 |
| Non Fire Rated Ceilings - Plasterboard Installation      | D3.15 |
| Non Fire Rated Ceilings - Back-blocking                  | D3.17 |
| Non Fire Rated Ceilings - Perimeter                      | D3.18 |
| Non Fire Rated Ceilings - Bulkhead                       | D3.19 |
| Non Fire Rated Ceilings - Acoustic Details               | D3.20 |

# **D4** | Reference

| Old / New Reference Guide | D4.  |
|---------------------------|------|
| Ouick Find Indox          | D4 / |



# **D1** General

# **Installation and Fastening Sequence for Steel Studs**

The first plasterboard sheet installed at a joint should be fixed to the open side of a stud flange. Additional sheets are then installed in the direction toward the closed side of the stud web.

When installing the first side, screw-fasten the plasterboard sheets to studs at edges only, as illustrated in Figure 1 (positions 1 and 2). Then, on the second side, fasten the edge (position 3) followed by intermediate studs (position 4). Return to the first side and fasten sheets to previously unattached studs (position 5).

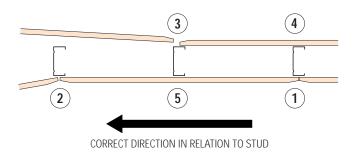



Figure 1 - Correct Fastening Sequence

#### Caution

Avoid fixing Boral Plasterboard sheets in the direction from the closed side of the stud to the open side of the stud web (Figure 2). This will result in the first sheet at a joint being incorrectly screwed to the flange on the closed side of the stud. The flange will then be free to deflect when the next sheet is screwed to the open side (Figure 2). This can permanently bend the flange, resulting in a lipped joint.

If the stud is not supported firmly while the screws are driven, the stud can twist from square, also resulting in a lipped joint (Figure 3).

Do not fix plasterboard sheets in the direction from the closed side of the stud to the open side of the stud web (Figure 2).

Do not screw the first sheet at a joint to the flange at the closed side of a stud web.

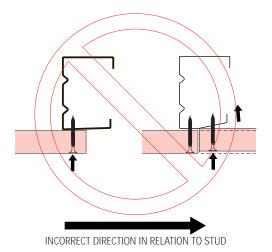



Figure 2 - Incorrect Fastening Sequence

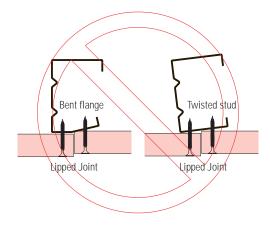



Figure 3 - Effect of Incorrect Fastening Sequence

# **Correct Installation**

The correct direction of sheet installation is in the direction from the open side of the stud to the closed side of the stud web (Figure 4). The first sheet installed at a joint is screwed to the flange at the open side of the stud. The flange will initially deflect then straighten as the screw pulls tight. Ensure that the stud is adequately supported to avoid twisting, and fully screw this sheet to the stud before continuing.

» Installation and Fastening Sequence for Steel Studs

The next sheet is now screwed to the flange at the closed side of the stud. The deflection on this part of the flange is very small, and the previously installed sheet helps keep the assembly rigid during the installation of the second sheet.

If fixed correctly the result is a flat joint with no lipping (Figure 5). The correct installation sequence is illustrated in Figure 5 below.

Do fix plasterboard sheets in the direction from the open side of the stud to the closed side of the stud (Figure 4).

Do screw the first sheet at a joint to the flange at the open side of a stud.

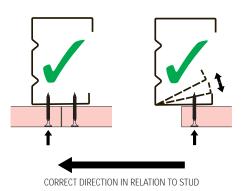



Figure 4 - Correct Fastening Sequence Detail

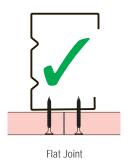



Figure 5 - Effect of Correct Fastening Sequence

# **Fastener Selection**

#### Plasterboard to Frame Fasteners

|                                | Timber Frame                                             |                                                                           |                                                   |                                     | Steel Frame                                            |
|--------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| Plasterboard<br>Thickness (mm) | Boral Smooth Shank<br>Gold Passivated Nails <sup>9</sup> | Boral Annular Ring Shank<br>Nails <sup>9</sup> and Uni-nails <sup>9</sup> | Galvanised Nails <sup>9</sup><br>(2.8 mm dia UNO) | Type W Screws <sup>2</sup>          | Types S <sup>3</sup> and<br>Type D <sup>4</sup> Screws |
| 1 x 10                         | 40 softwood<br>30 hardwood                               | 30                                                                        | 40 softwood<br>30 hardwood                        | 6-9 x 25W wall<br>6-9 x 32W ceiling | 6-18 x 25 <sup>7</sup><br>D, S                         |
| 1 x 13                         | 40 softwood<br>30 hardwood                               | 30                                                                        | 40 softwood<br>30 hardwood                        | 6-9 x 32W                           | 6-18 x 25 <sup>7</sup><br>D, S                         |
| 1 x 16                         | 50                                                       | -                                                                         | 50 softwood<br>40 hardwood                        | 6-9 x 40W                           | 6-18 x 30<br>D, S                                      |
| 1 x 25                         | -                                                        | -                                                                         | -                                                 | -                                   | 6-18 x 40D, S                                          |
| 2 x 10                         | 50                                                       | -                                                                         | 50                                                | 6-9 x 40W                           | 6-18 x 30D, S                                          |
| 2 x 13                         | 65                                                       | -                                                                         | 50                                                | 6-9 x 50W                           | 6-18 x 40D, S                                          |
| 13 + 16                        | 65                                                       | -                                                                         | 50                                                | 6-9 x 50W                           | 6-18 x 40D, S                                          |
| 2 x 16                         | 65                                                       | -                                                                         | 65                                                | 6-9 x 60W                           | 6-18 x 45D, S                                          |
| 3 x 13                         | -                                                        | -                                                                         | 75 x 3.75                                         | 8-8 x 60W                           | 7-16 x 50S                                             |
| 3 x 16                         | -                                                        | -                                                                         | 75 x 3.75                                         | 8-8 x 75W                           | 8-15 x 60S                                             |

#### Plasterboard to Plasterboard Fasteners

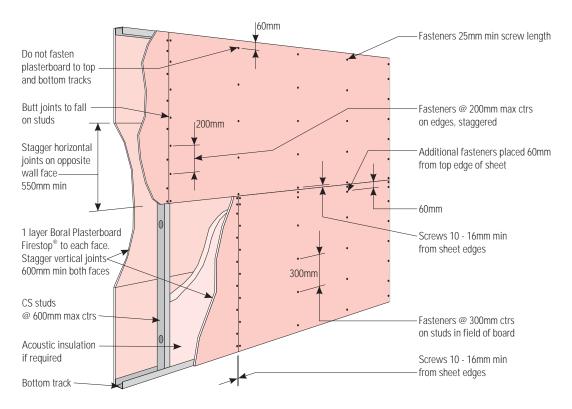
| Number of Layers of Plasterboard<br>x Thickness |                | Type L <sup>10</sup> Screws for<br>Fixing Plasterboard |  |
|-------------------------------------------------|----------------|--------------------------------------------------------|--|
| Plasterboard A                                  | Plasterboard B | A to B                                                 |  |
| 1 x 13mm                                        | 13mm           | 10 - 8 x 32mm                                          |  |
| 1 x 16mm                                        | 16mm           | 10 - 8 x 38mm                                          |  |
| 1 x 16mm                                        | 2 x 16mm       | 6 - 8 x 50mm                                           |  |

#### Notes:

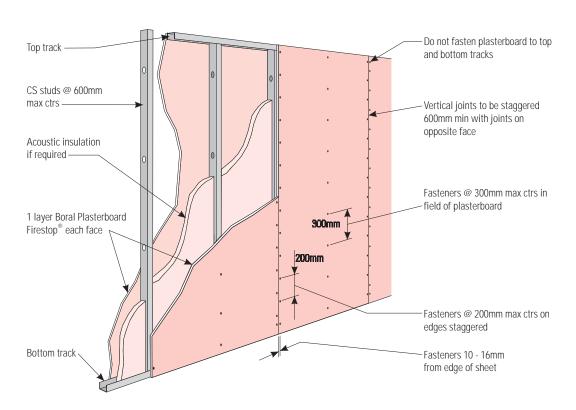
- 1. All screws to be to Australian Standard AS3566-1988 corrosion class 1.
- 2. "W" is a single start, needle point, bugle head type W gypsum screw for fixing to hardwood and softwood framing. In some instances double start thread screws are permissible (refer Boral Plasterboard).
- 3. "S" is a double start, needle point, bugle head type S gypsum screw for fixing to steel gauges of up to 0.80mm BMT.
- 4. "D" is a double start, drill point, bugle head type D gypsum screw for fixing to steel gauges 0.80 to 2.00mm BMT.
- 5. "L" is a single start, needle point, bugle head type L gypsum screw for fixing plasterboard to plasterboard.
- 6. Screw designation given as (minimum screw gauge) (threads per inch +1)  $\boldsymbol{x}$ (minimum screw length).

- 7. For ease of construction with framing steel gauges of less than 0.8mm BMT use 30mm minimum screw length.
- 8. Correct screw length is critical when fastening to resilient furring channel to avoid acoustic bridging.
- 9. Nail lengths are minimums, however care is needed when selecting longer nails to avoid nail bending in hardwoods or popping of plasterboard with
- 10. For wall systems only. Tables to be read in conjunction with plasterboard installation details.

This page left blank intentionally.


# D2 | Walls

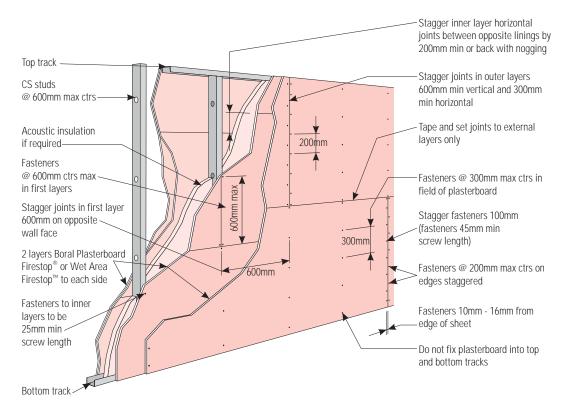
# **Wall Construction Notes**


- 1. Steel stud wall systems are non load bearing unless noted otherwise.
- 2. Wall systems should not be used where conditions of constant excessive moisture or humidity are prevalent ie, in excess of 90% relative humidity.
- 3. Movement joints should be put at building construction joint locations. Control joints should be spaced at not more than 12 metre maximum centres in either direction.
- 4. Finish all joints with Boral Plasterboard jointing system, compromising perforated tape and jointing compound.
- 5. All approved fire rated penetrations must be installed and caulked in accordance with details provided in this manual.
- 6. Fire rated systems must be assembled strictly in accordance with relevant test reports, opinions, approved system details and specifications.

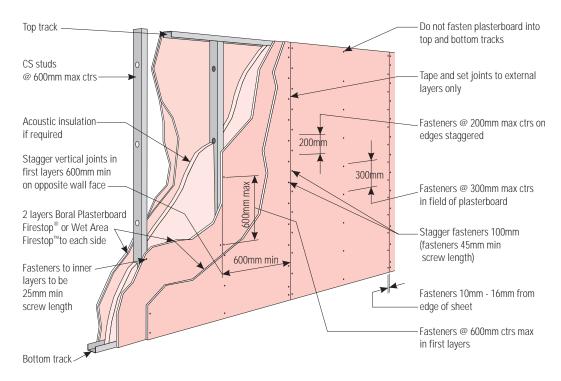
- 7. Steel Studs in fire rated partitions are not to be fastened to top and bottom tracks except boxed studs facing fire door openings, in which case the boxed studs are pop riveted to the tracks.
- 8. Steel wall framing to Rondo specifications or approved equivalent and spaced at 600mm centres maximum.
- 9. Components must not be used if fractured or damaged.
- 10. Butt joints to be backed by stud or nogging for fire rated systems.
- 11. Mid span nogging is recommended for erection purposes for steel stud walls greater than 3600mm.
- 12. Timber stud framing to AS1684, relevant Australian Standards and spaced at 600mm centres maximum.
- 13. Fire rated timber systems shall be read in conjunction with Timber Charfactor Tables in Section C3 of this manual.

# Fire Rated Steel Framed Walls - Plasterboard Installation



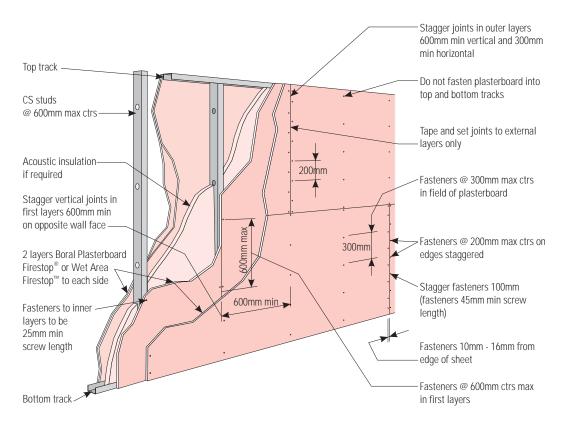

Fire Rated Steel Stud - Horizontal Fixing - Single Layer




Fire Rated Steel Stud - Vertical Fixing - Single Layer

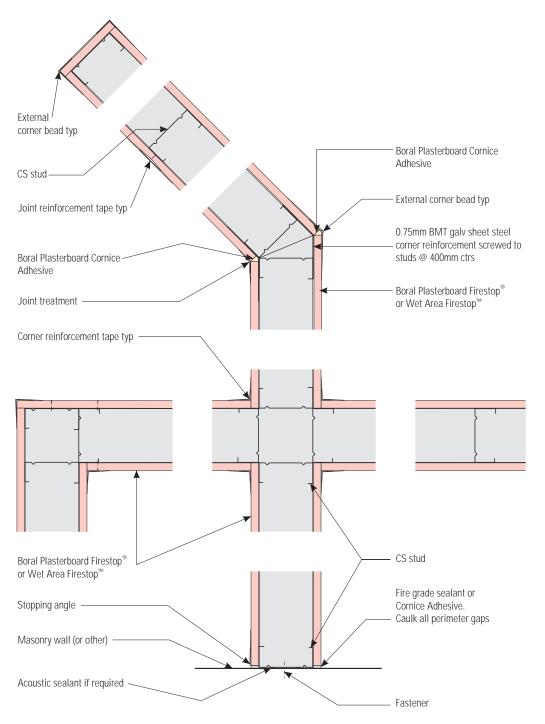
**D**2

# » Fire Rated Steel Framed Walls - Plasterboard Installation




Fire Rated Steel Stud - Horizontal Fixing - Multiple Layer



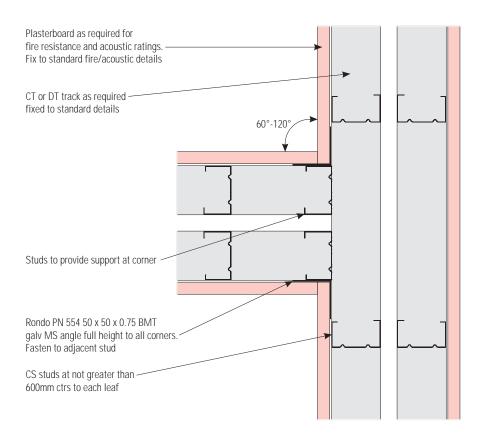

Fire Rated Steel Stud - Vertical Fixing - Multiple Layer

# » Fire Rated Steel Framed Walls - Plasterboard Installation

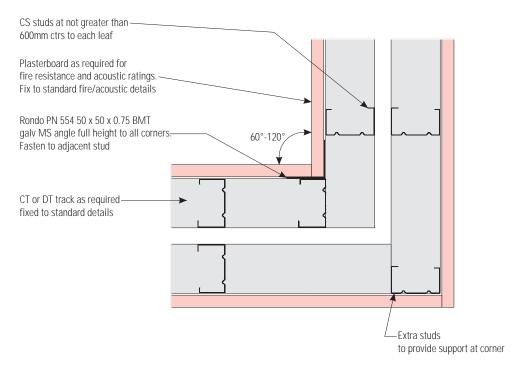


Fire Rated Steel Stud - Mixed Orientation - Multiple Layer

# Fire Rated Steel Framed Walls - Terminals and Junctions

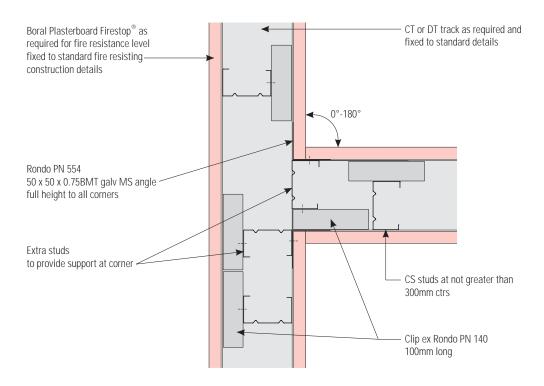



Single Stud Terminal and Junction Details (Twin stud, staggered stud layout similar)

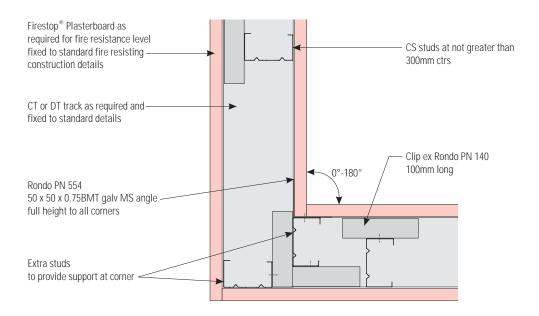

#### Notes:

- · Control joints must coincide with those occurring in the main building structure and/or at maximum 12 metre centres.
- · Location of control joints should be verified with structural engineer.

# » Fire Rated Steel Framed Walls - Terminals and Junctions




#### Twin Steel Stud T-Junction Detail

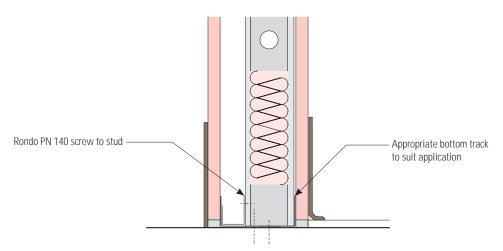



Twin Steel Stud Corner Detail

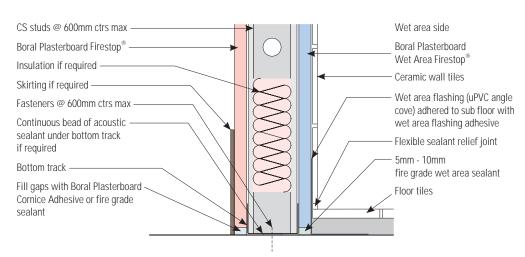
# » Fire Rated Steel Framed Walls - Terminals and Junctions



#### Staggered Steel Stud T-Junction Detail



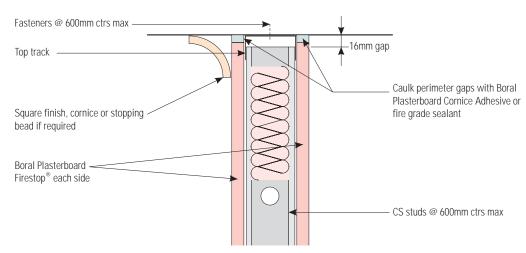

#### Staggered Steel Stud Corner Detail


# Fire Rated Steel Framed Walls - Base Details

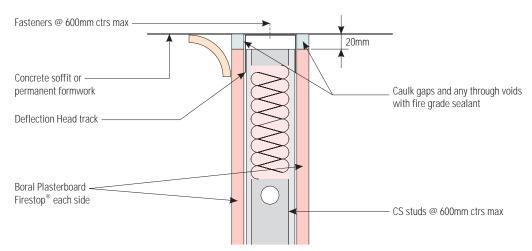


#### **Partition Base Detail**

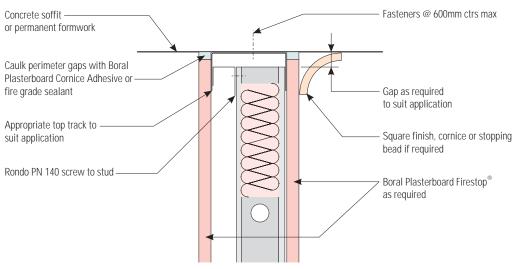



#### Staggered Stud Base Detail



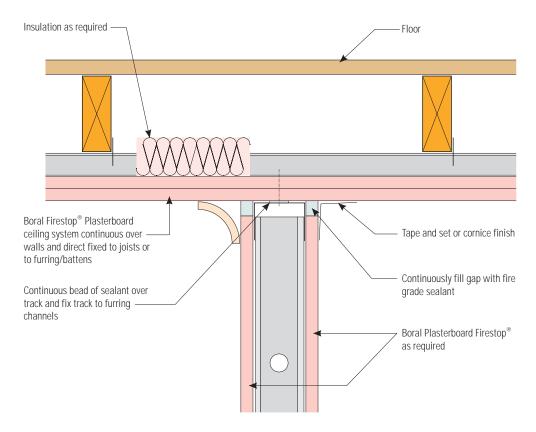

**Partition Wet Area Base Detail** 

# 2


# Fire Rated Steel Framed Walls - Head Details



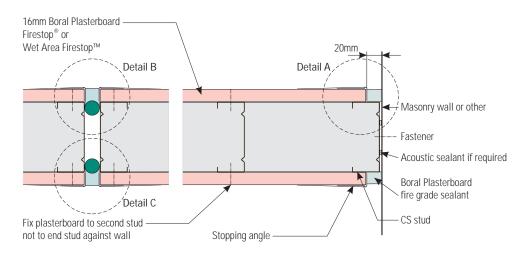
#### **Partition Head Detail**



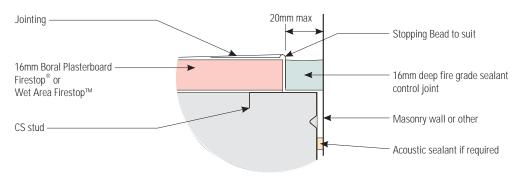

#### **Deflection Head Detail**



#### Staggered Stud Head Detail


# » Fire Rated Steel Framed Walls - Head Details

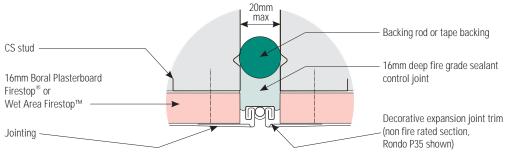



Fire Rated Wall to Fire Rated Ceiling Detail

# \_

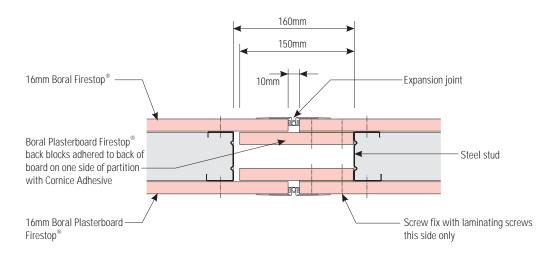

# Fire Rated Steel Framed Walls - Control / Movement Joints



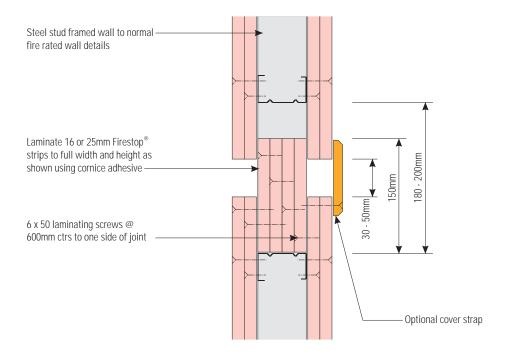

#### Control Joint Details FRL 60/60/60 (also available in other FRLs)



#### Detail A




#### Detail B

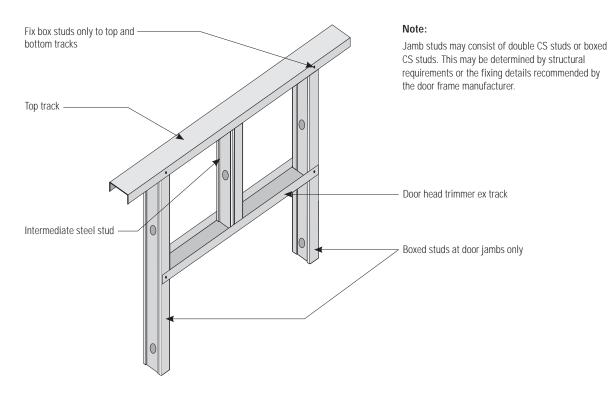



Detail C

# » Fire Rated Steel Framed Walls - Control/Movement Joints



### Movement Joint Detail FRL 60/60/60

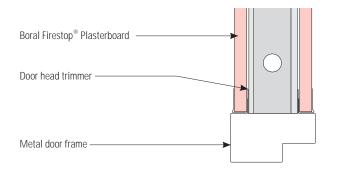



#### Movement Joint Detail FRL 120/120/120

#### Notes:

- Maximum joint movement capacity +/-20mm horizontally in plane of wall.
- FRL of wall not to exceed 120/120/120.
- Floor tracks to be cut over width of required control joint.

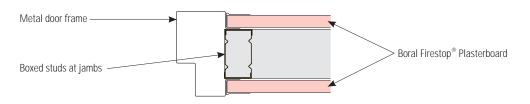
# Fire Rated Steel Framed Walls - Door Details




#### **Door Head Trimmer Detail**

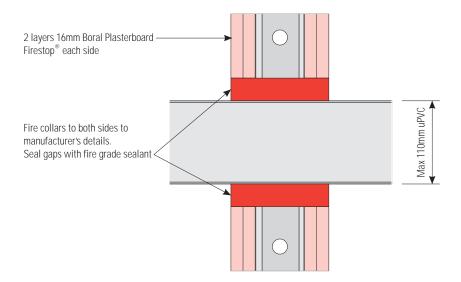
#### Note:

Jamb studs may consist of double CS studs or boxed CS studs.

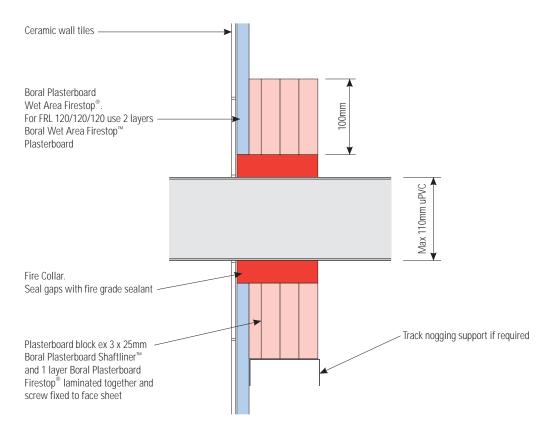

This may be determined by structural requirements or the fixing details recommended by the door frame manufacturer.



#### Notes:

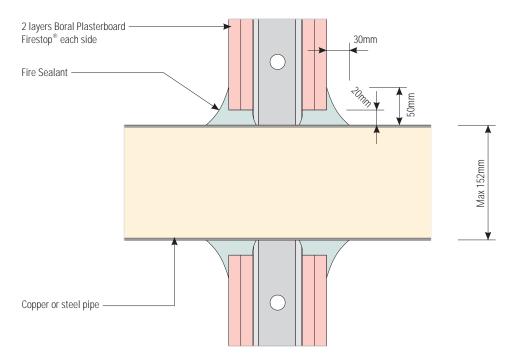

- Details shown are generic only.
- Check with specific door frame manufacturer to ensure that fire rating is maintained.

#### **Door Head Detail**

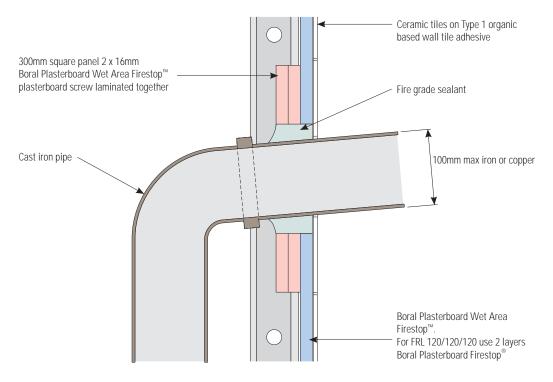



#### Door Jamb Detail

# Fire Rated Steel Framed Walls - Plumbing Penetrations

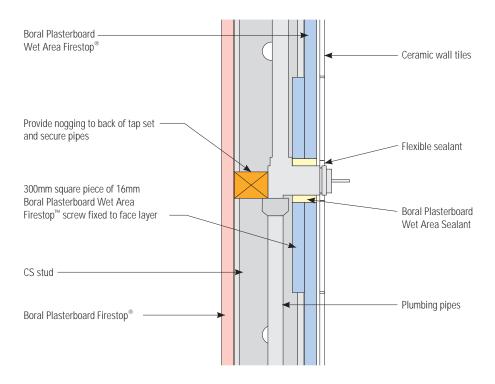



#### Penetration Detail - uPVC Pipe - Single Stud - FRL NA/120/NA

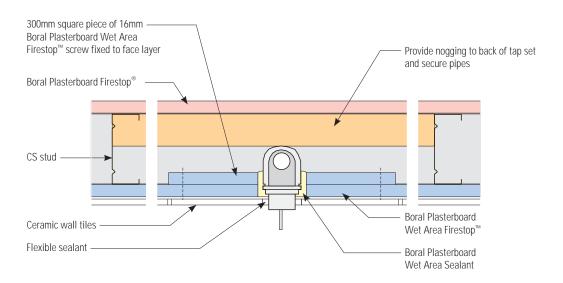



Penetration Detail - uPVC Pipe - Twin Stud - FRL 60/60/60

# » Fire Rated Steel Framed Walls - Plumbing Penetrations




Penetration Detail - Copper/Steel Pipe - Single Stud - FRL 120/120/-



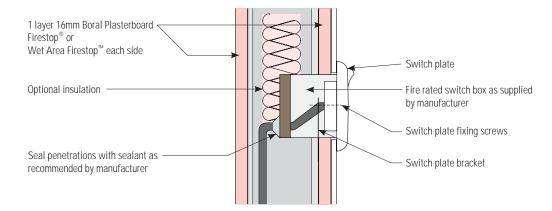

Penetration Detail - Copper/Steel Pipe - Twin Stud - FRL 60/60/60

# » Fire Rated Steel Framed Walls - Plumbing Penetrations

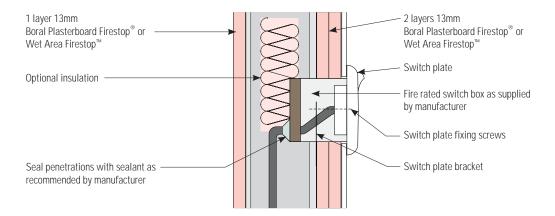


#### Typical Plumbing Penetration Detail - Section

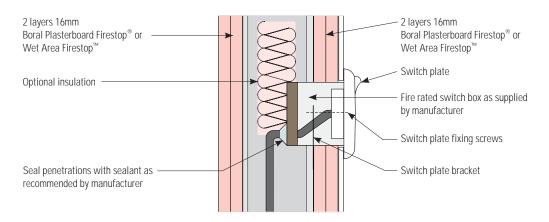



#### Typical Plumbing Penetration Detail - Plan

#### Notes:

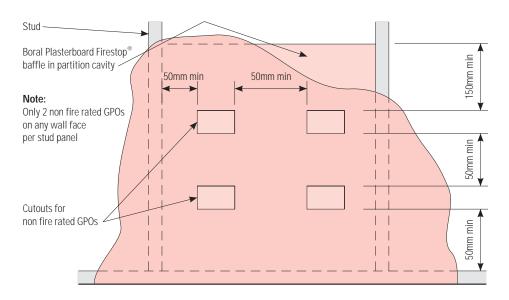

The following instructions must be followed to achieve satisfactory results:

- Care should be taken to isolate copper pipes away from contact with steel framing to avoid problems with corrosion.
- Plasterboard linings are not to act as supports for piping.
- Piping is to be kept clear of face sheets and baffles.
- Ensure that baffles protect the areas immediately behind wall penetrations.
- · Pipes are to penetrate one face only of the partition between any two wall studs.
- Total area of all openings between any two wall studs must be no greater than 5000mm<sup>2</sup>.

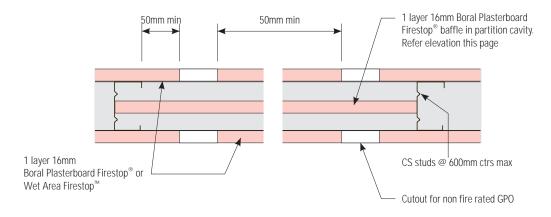

# Fire Rated Steel Framed Walls - Electrical Penetrations



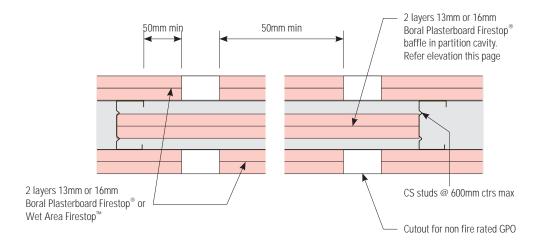
#### Fire Rated GPO Detail Only - Partition FRL 60/60/60




#### Fire Rated GPO Detail Only - Partition FRL 90/90/90

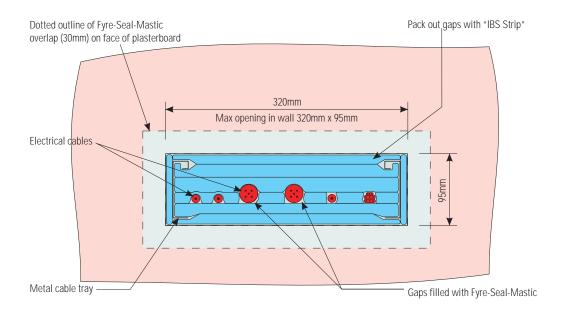



Fire Rated GPO Detail Only - Partition FRL 120/120/120

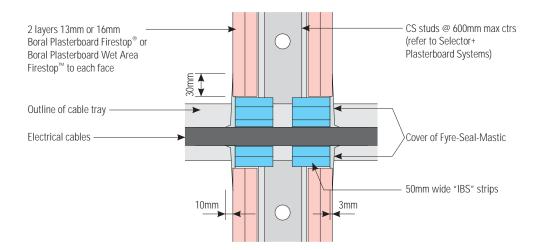

# » Fire Rated Steel Framed Walls - Electrical Penetrations



Typical Layout Elevation - Non Fire Rated GPOs in Fire Rated Partition

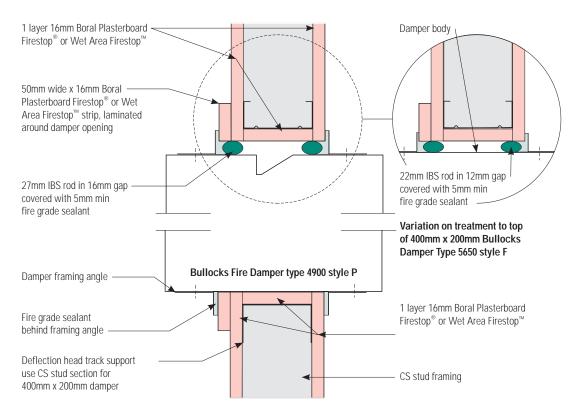



Typical Layout Plan - Non Fire Rated GPOs in FRL 60/60/60 Partition

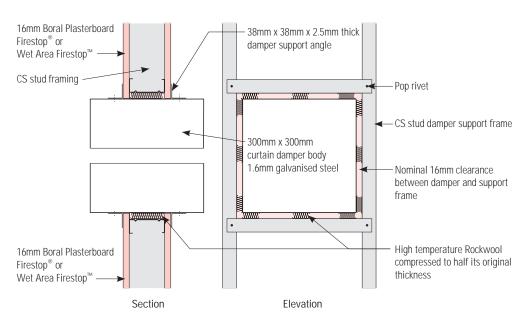



Typical Layout Plan - Non Fire Rated GPOs in FRL 90/90/90 and FRL 120/120/120 Partition

# » Fire Rated Steel Framed Walls - Electrical Penetrations




#### Penetration Detail - Cable Tray - Section Through Tray

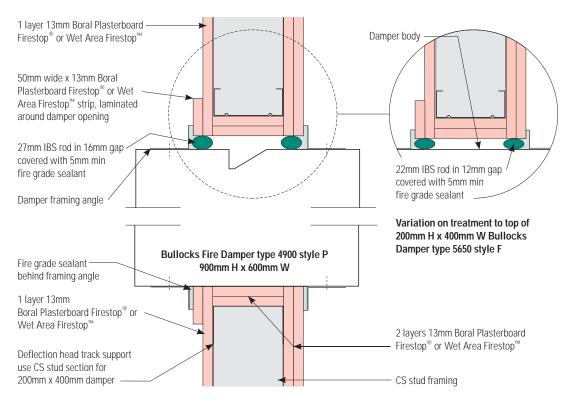



Penetration Detail - Cable Tray - Section Through Wall

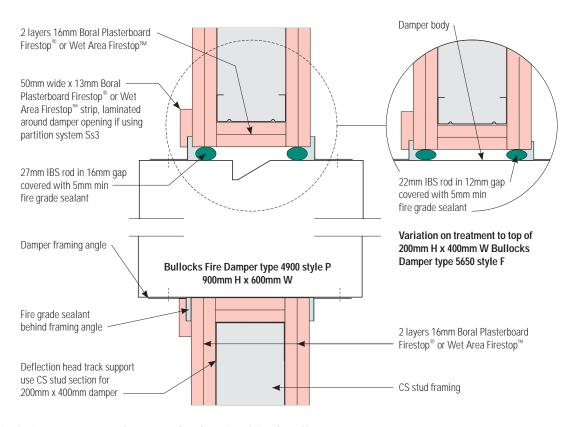
# Fire Rated Steel Framed Walls - HVAC Penetrations



Typical Fire Damper Detail - FRL 60/60/60 Steel Stud Wall

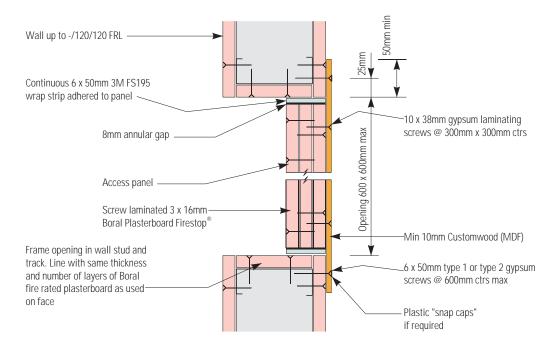



Typical Fire Damper Detail - FRL 60/60/60 Steel Stud Wall


#### Notes:

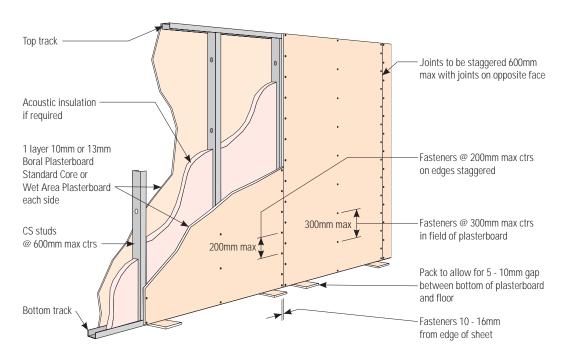
- Consult with Mechanical and Structural Engineers for details of methods of supporting damper at wall, especially if damper opening exceeds 600mm x 900mm.
- · Refer to fire damper manufacturer for alternative or additional fixing details.

# » Fire Rated Steel Framed Walls - HVAC Penetrations

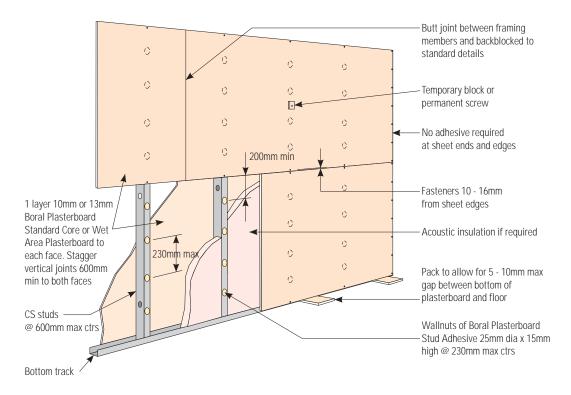



Typical Fire Damper Detail - FRL 90/90/90 Steel Stud Wall




Typical Fire Damper Detail - FRL 120/120/120 Steel Stud Wall

# Fire Rated Steel Framed Walls - Access Panel

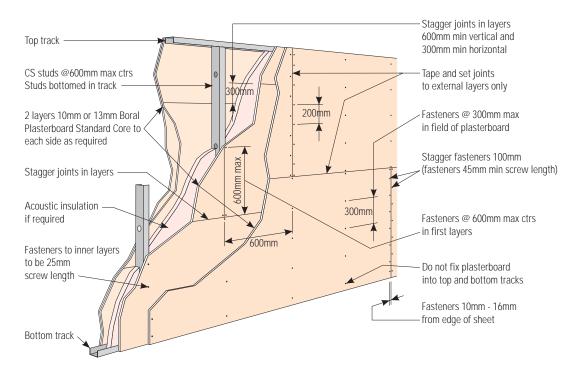



**Access Panel Detail** 

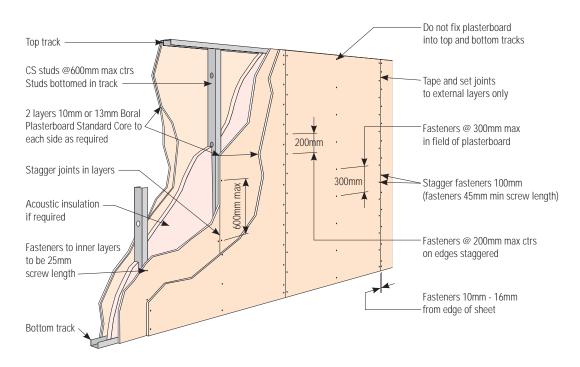
# Non Fire Rated Steel Framed Walls - Plasterboard Installation



Non Fire Rated Steel Stud - Vertical Fixing - Single Layer

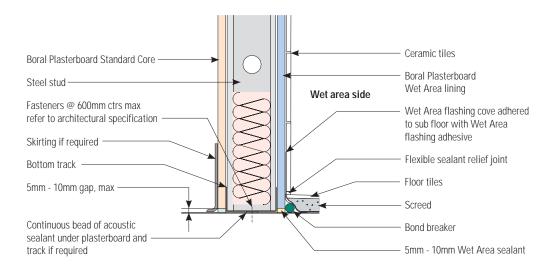



Non Fire Rated Steel Stud - Horizontal Fixing - Single Layer


#### Note

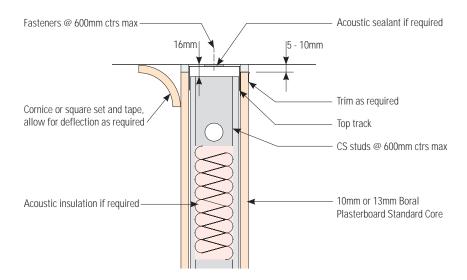
For level 4 and 5 finish, butt joints to fall between framing members, otherwise butt joints may be fixed to studs.

# » Non Fire Rated Steel Framed Walls - Plasterboard Installation

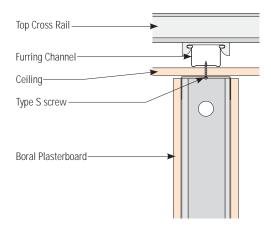



Non Fire Rated Steel Stud - Horizontal Fixing - Multiple Layer

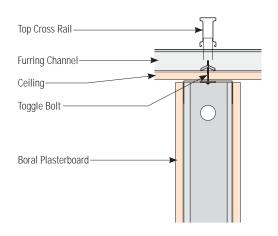



Non Fire Rated Steel Stud - Vertical Fixing - Multiple Layer

### Non Fire Rated Steel Framed Walls - Base Details




Standard Non Fire Rated Wall Base Detail

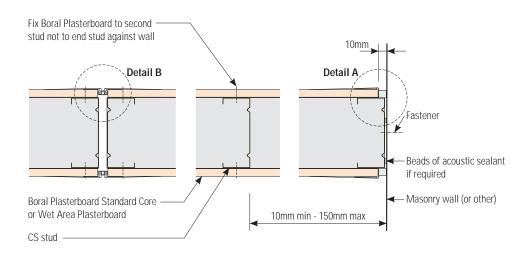

### Non Fire Rated Steel Framed Walls - Head Details

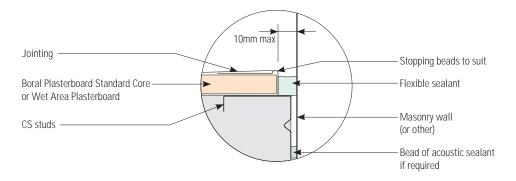


#### Standard Non Fire Rated Wall Head Detail

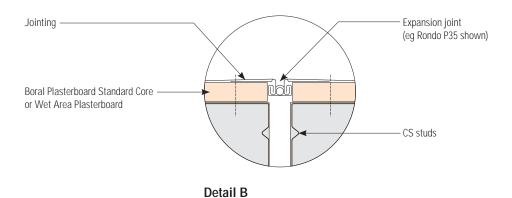


### Wall Head Fixing to Suspended Ceiling Detail - Parallel to Furring





#### Notes:

- Screw Fixed Ceiling Systems.
- Where possible, fasteners should be fixed through the plasterboard ceiling into the steel furring channel above, using type S screws of adequate length. Where furring channels cannot be located, use toggle bolts or expanding type fasteners which secure above the ceiling.

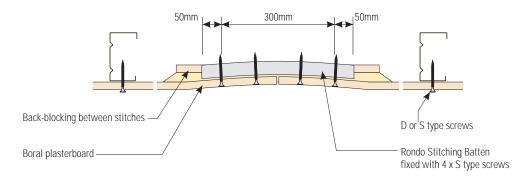

Wall Head Fixing to Suspended Ceiling Detail - Perpendicular to Furring

### Non Fire Rated Steel Framed Walls - Control Joints



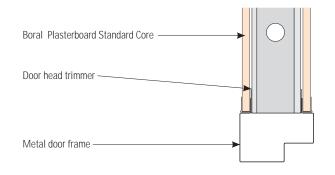


Detail A




**Control Joint Details** 

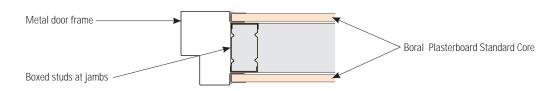
# ...


# >

### Non Fire Rated Steel Framed Walls - Back-blocking



**Back-blocking Using Stitching Batten Detail** 

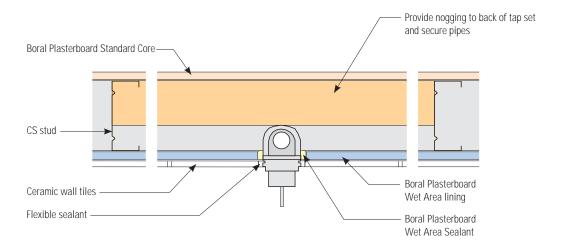

### Door Details - Non Fire Rated Steel Framed Walls



#### Notes:


- · Details shown are generic only.
- Check with specific door frame manufacturer for alternative detailing.

#### Door Head Detail - Non Fire Rated




Door Jamb Detail - Non Fire Rated

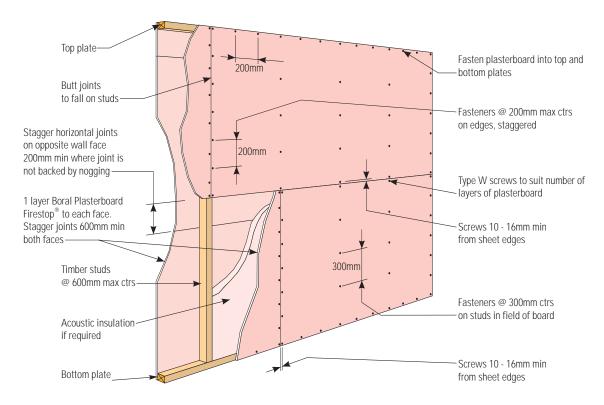
### Non Fire Rated Steel Framed Walls - Plumbing Penetrations



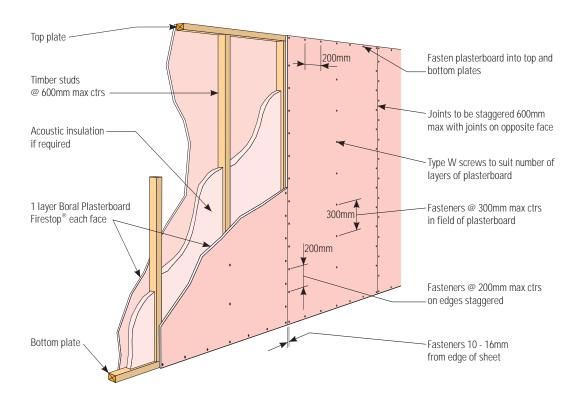
Typical Plumbing Penetration Detail - Section



### Typical Plumbing Penetration Detail - Plan

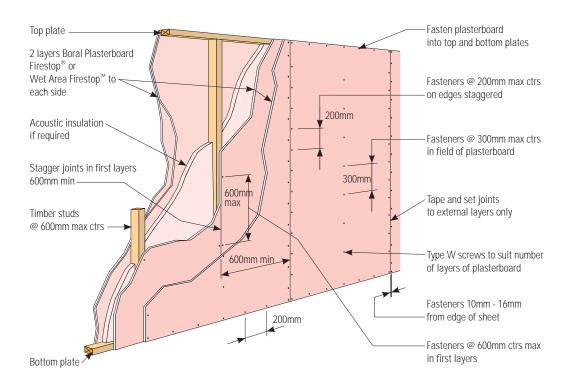

#### Notes

The following instructions must be followed to achieve satisfactory results:

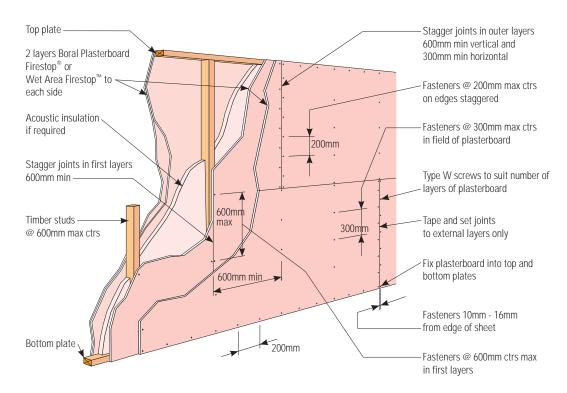

- Care should be taken to isolate copper pipes away from contact with steel framing to avoid problems with corrosion.
- Plasterboard linings are not to act as supports for piping.
- Piping is to be kept clear of face sheets.

This page left blank intentionally.

### Fire Rated Timber Framed Walls - Plasterboard Installation

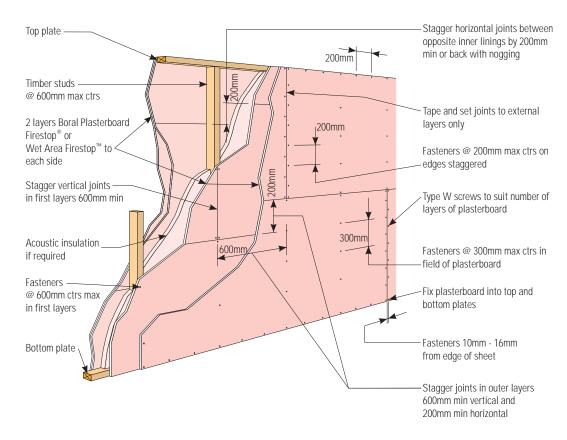



Fire Rated Timber Stud - Horizontal Fixing - Single Layer



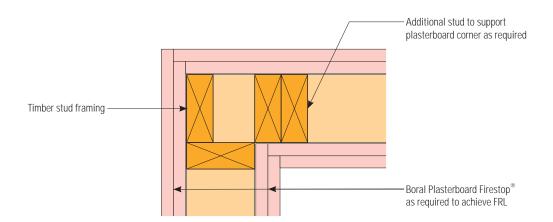

Fire Rated Timber Stud - Vertical Fixing - Single Layer

### » Fire Rated Timber Framed Walls - Plasterboard Installation

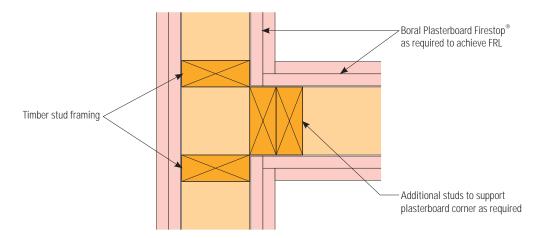



Fire Rated Timber Stud - Vertical Fixing - Multiple Layer

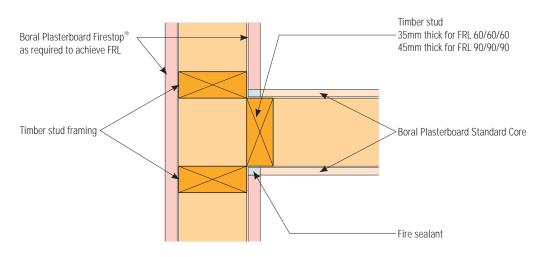



Fire Rated Timber Stud - Mixed Orientation - Multiple Layer

### » Fire Rated Timber Framed Walls - Plasterboard Installation

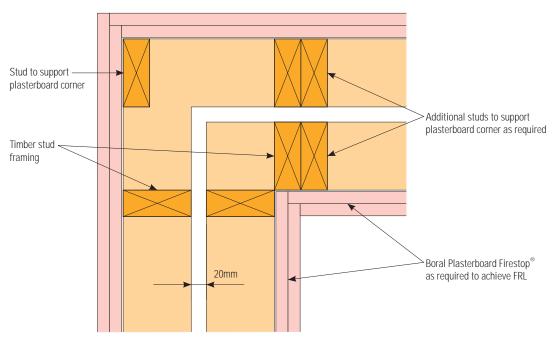



Fire Rated Timber Stud - Horizontal Fixing - Multiple Layer

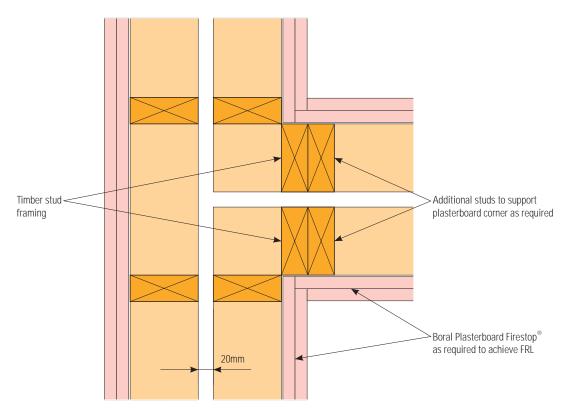

### Fire Rated Timber Framed Walls - Wall Junctions



### Single Timber Stud Wall Corner Junction Detail

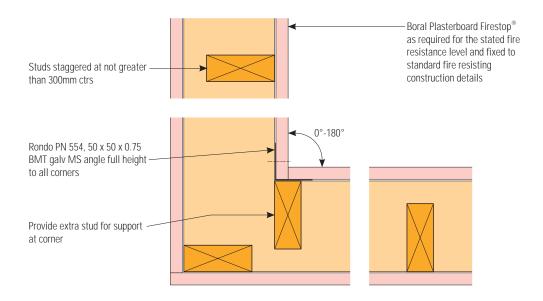



#### Single Timber Stud Wall T Junction Detail

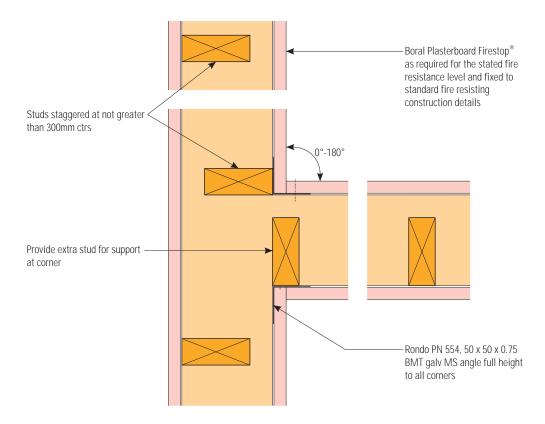



Single Timber Stud Fire Rated Wall to Non Fire Rated Wall T Junction Detail

# » Fire Rated Timber Framed Walls - Wall Junctions

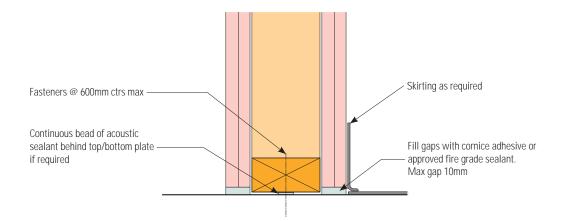



Twin Timber Stud Wall - Corner Junction Detail



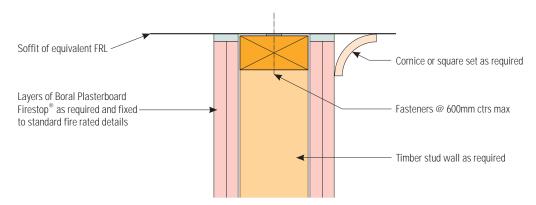

Twin Timber Stud Wall - T Junction Detail

### » Fire Rated Timber Framed Walls - Wall Junctions

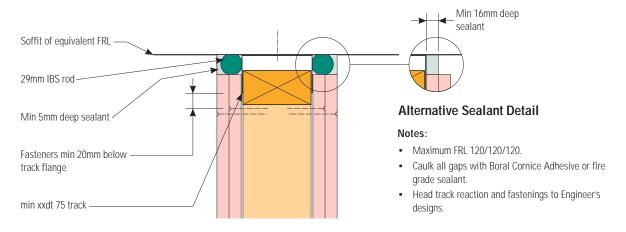



#### Staggered Timber Stud Wall - Corner Junction Detail

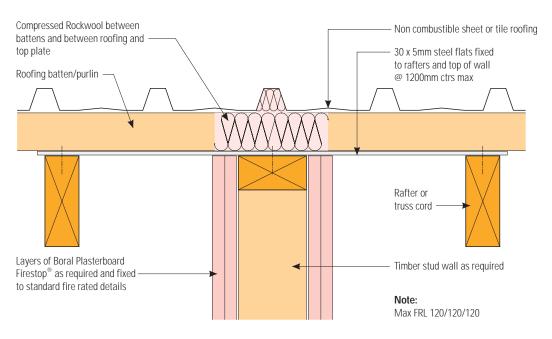



Staggered Timber Stud Wall - T Junction Detail

### Fire Rated Timber Framed Walls - Base Detail

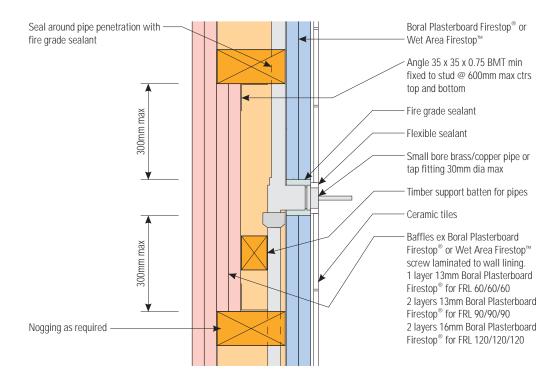



Standard Timber Stud Wall - Base Detail

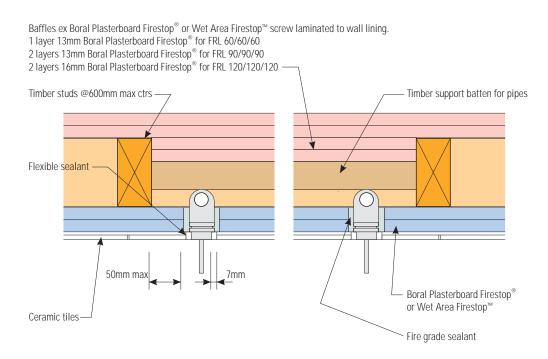

### Fire Rated Timber Framed Walls - Head Details



#### Standard Timber Stud Wall - Head Detail



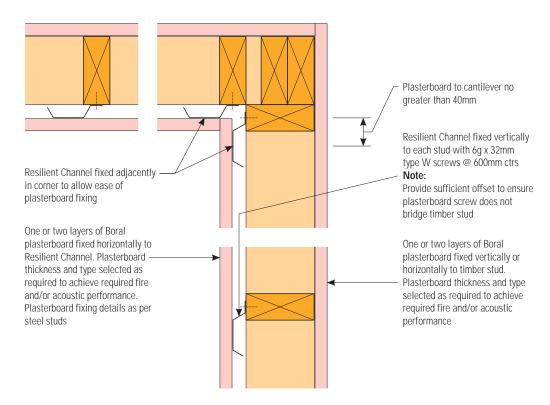

#### Standard Timber Stud Wall - Deflection Head Detail



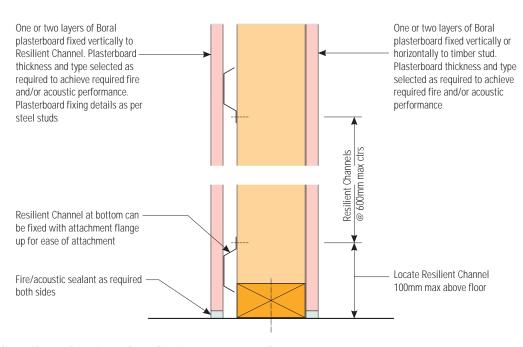

Standard Timber Stud Wall - Head to Roof Junction Detail

## Fire Rated Timber Framed Walls - Plumbing Penetrations




#### Standard Fire Rated Timber Stud Wall Plumbing Pipe Penetration - Section



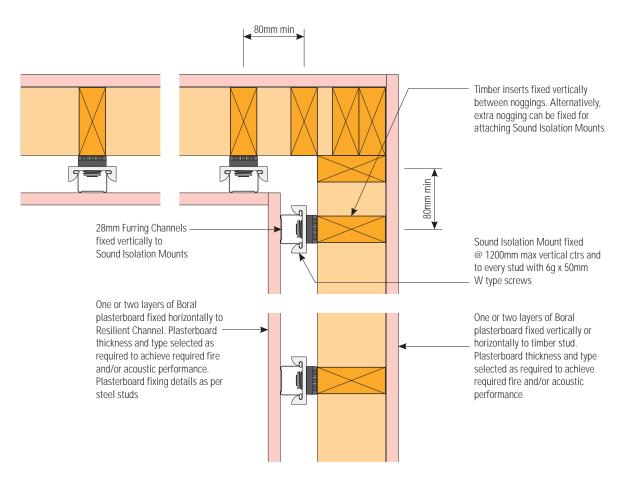

Standard Fire Rated Timber Stud Wall Plumbing Pipe Penetration - Plan

# D2

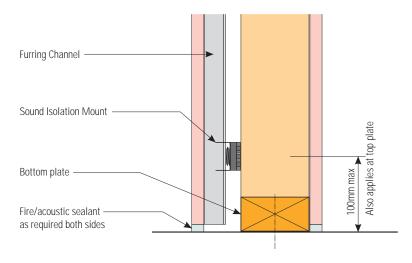
### Fire Rated Timber Framed Walls - Acoustic Details



#### **Resilient Channel Vertical Application - Corner Detail**




#### **Resilient Channel Horizontal Application - Base Detail**


#### Notes:

- · Resilient Channel to be located within 150mm of the ceiling.
- Extend Resilient Channel into all corners and attach to corner framing.
- Splice Resilient Channels directly over studs by inserting (not butting) the Resilient Channels and driving screw fastener through both flanges into the stud.

### » Fire Rated Timber Framed Walls - Acoustic Details



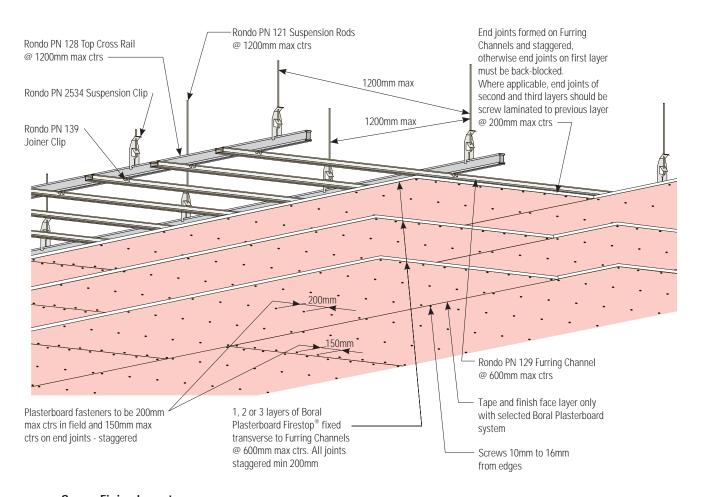
### **Sound Isolation Mount - Corner Detail**



Sound Isolation Mount - Base Detail

This page left blank intentionally.

# **D3** | Ceilings

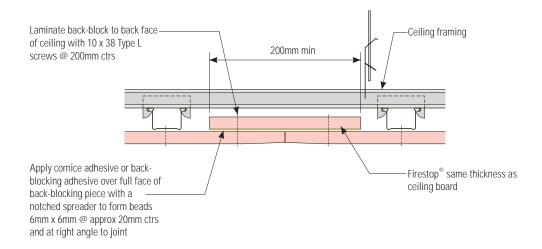

### **Ceiling Construction Notes**

- Movement joints should be put at building construction joint locations or where there is expected movement in the building structure.
- Control joints should be spaced at not more than 12 metre maximum centres in either direction (15 metre centres where there is perimeter relief) and where there is change in substrate materials.
- Specifiers should be aware of the likelihood of frame
  movement due to structural, thermal and seasoning effects on
  direct fixed plasterboard ceilings. Where necessary specify a
  furred system to minimise the risk of ceiling damage due to
  these effects.
- 4. Furring/resilient channel/framing supports to be taken/ provided within 50mm of ceiling perimeter. Minimum 15mm end clearance to walls.
- Boral Plasterboard ceiling systems are not designed to support the weight of maintenance personnel, additional plant or storage loadings.
- 6. Thermal or acoustic insulation (maximum 2kg/m²) may be placed above plasterboard ceiling lining.

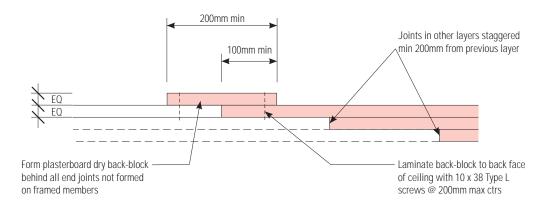
- 7. Tape and finish with preferred Boral Plasterboard jointing system.
- 8. Pitch of ceiling to be in the range of 0-70° from horizontal varying of minimum radius of 6000mm.
- 9. Ceiling framing to Rondo specifications or appropriate Australian Standards.
- 10. Boral plasterboard to be applied along or across supporting member. Butt or end joints not formed on framing members should be back-blocked as detailed in the manual.
- 11. For fire rated systems allow 20mm expansion gap (or at the rate of 3mm per 1 metre run) to furring/resilient channels and top cross rails.
- 12. All approved fire rated penetrations must be installed and caulked in accordance with details provided in this manual.
- 13. For non fire rated systems, plasterboard may be fixed with screws or a combination of adhesive and screws. A combination of adhesive and screws is the preferred method for general application.
- Where nails are to be used to fix plasterboard in non fire rated systems, refer AS/NZ 2589.1 1997 for recommendations.

This page left blank intentionally.

## Fire Rated Ceilings - Plasterboard Installation



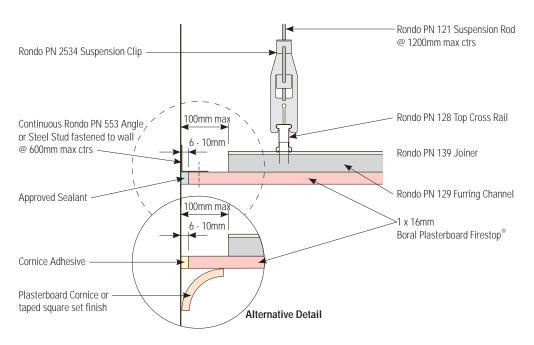

**Screw Fixing Layout** 


### Fire Rated Ceilings - Back-blocking

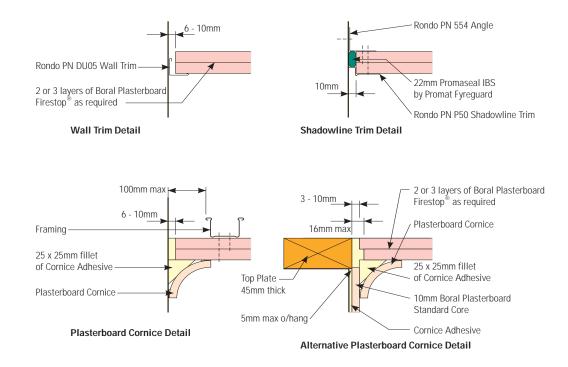
Back-blocking is a mandatory fixing requirement where specified in the Australian Standard AS/NZS 2589.1:1997.

Failure to provide back-blocking installed as per AS/NZS 2589.1:1997 may result in liability for any associated costs relating to maintenance and/or rectification caused by jointing defects.



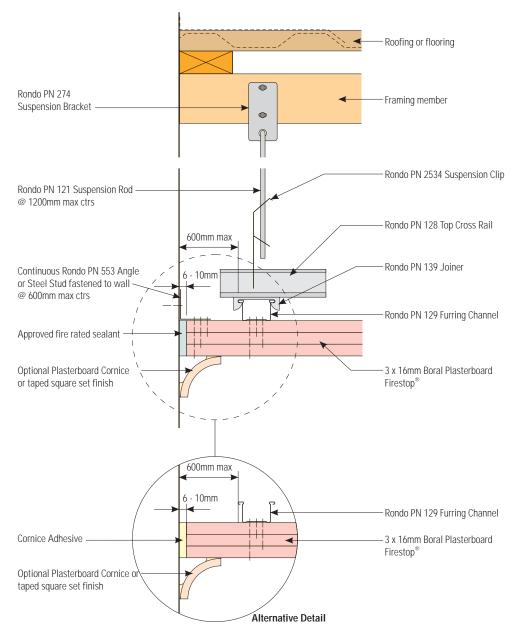

### Single Layer Back-block Detail




### Multi Layer Back-block Detail

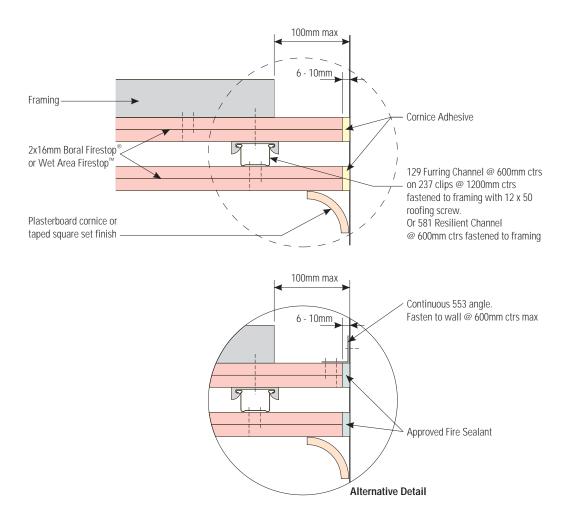
# S

## Fire Rated Ceilings - Perimeter




Typical Perimeter Detail - FRL 30/30/30




Typical Perimeter Detail - FRL 60/60/60

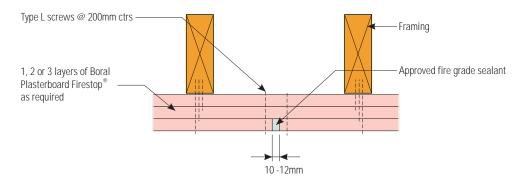
## » Fire Rated Ceilings - Perimeter



Typical Perimeter Detail - FRL 90/90/90

## » Fire Rated Ceilings - Perimeter

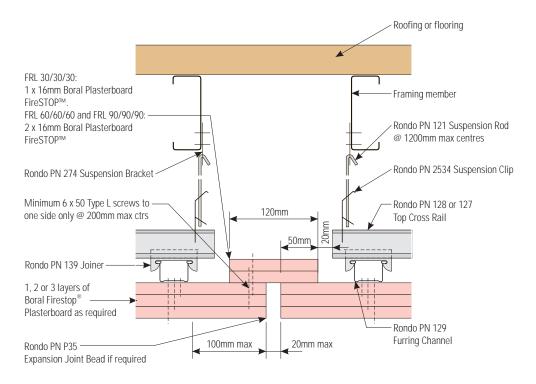



Typical Perimeter Detail - FRL 120/120/120

## Fire Rated Ceilings - Bulkhead

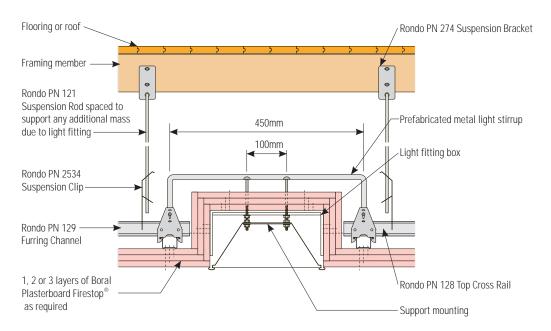


Typical Bulkhead Detail


### Fire Rated Ceilings - Movement/Control Joints



### **Typical Control Joint Detail**

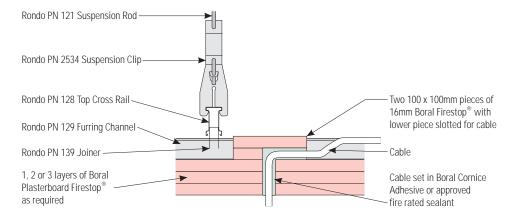

#### Notes:

- 1. Locate joint centrally between framing members when parallel to framing.
- 2. Minimum of one layer of Boral Firestop® Plasterboard continuous over joint.
- 3. Ensure single layer system is back blocked.

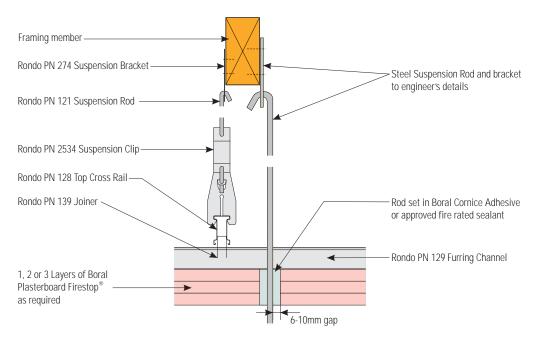


Typical Movement Joint Detail

# Fire Rated Ceilings - Lights

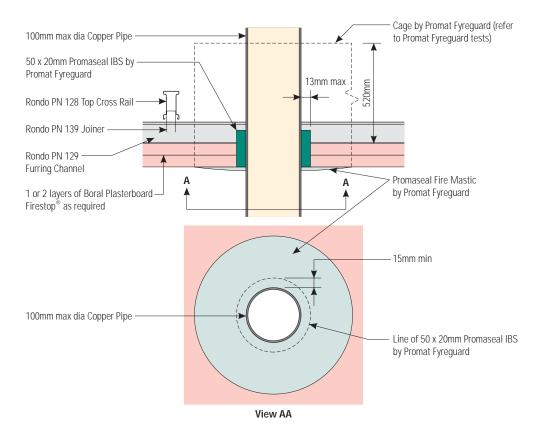



Typical Light Recess Detail

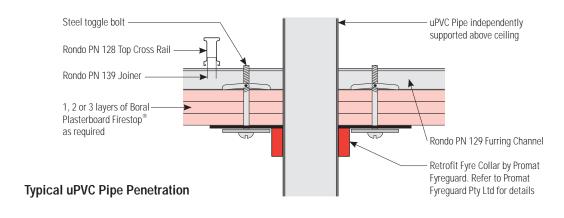

## Fire Rated Ceilings - Electrical and Loaded Penetrations

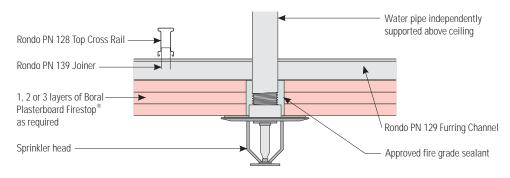


#### **Cable Penetration Detail**



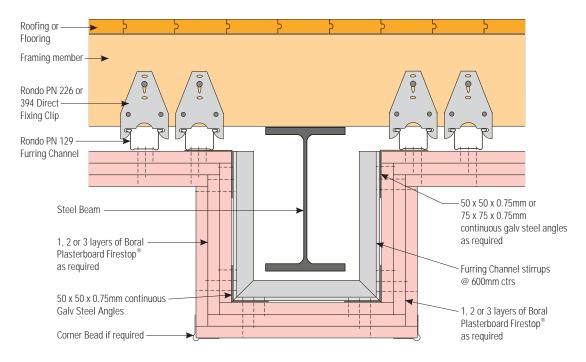

#### **Alternative Cable Penetration Detail**





**Typical Loaded Penetration Detail** 

### » Fire Rated Ceilings - Plumbing Penetrations

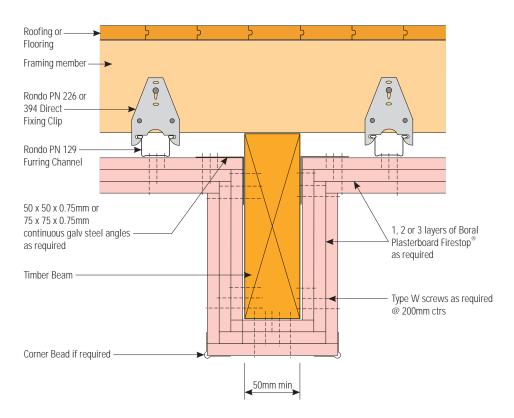



Typical Copper Pipe Penetration - FRL 30/30/30 and FRL 60/60/60





**Typical Sprinkler Pipe Penetration** 


### Fire Rated Ceilings - Beam Protection

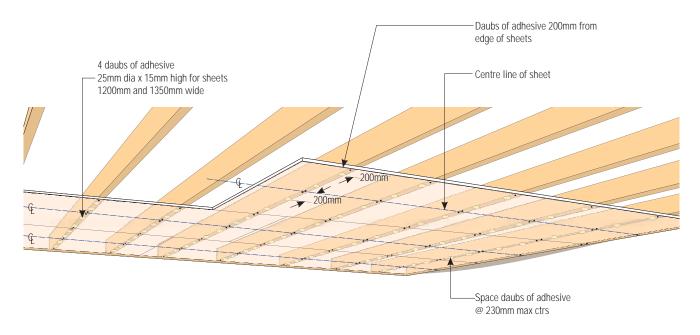


#### **Typical Steel Beam Protection Detail**

#### Note:

Vertical plasterboard fixed as per ceiling




**Typical Timber Beam Protection Detail** 

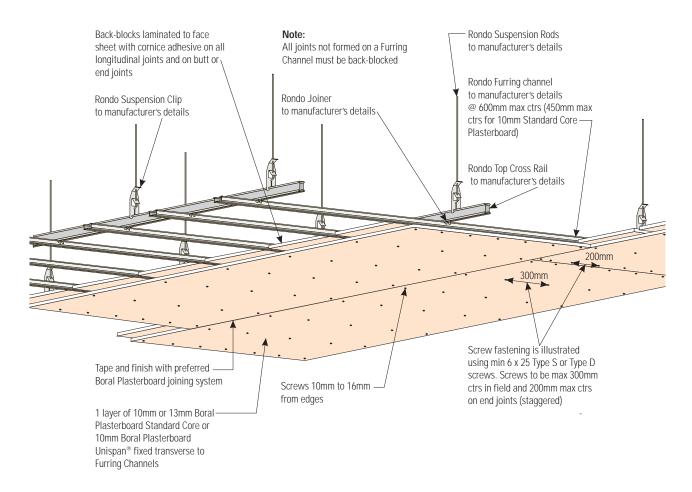
I

3 Ceilin

This page left blank intentionally.

## Non Fire Rated Ceilings - Plasterboard Installation




### Adhesive and Mechanical Fixing Layout (conventional spacing shown)

#### Adhesive / Fastener Layout

|                              | Ceilings                |             |  |
|------------------------------|-------------------------|-------------|--|
| Plasterboard Width (mm)      | Conventional<br>Spacing | 1/3 Spacing |  |
| 900                          | FAFAF                   | FAFAF       |  |
| 1200                         | FAAF/FAAF               | FAFAFAF     |  |
| 1350                         | FAAF/FAAF               | FAFAFAF     |  |
| F = Screw F/F = Double Screw | A = Adhesive            |             |  |

- Under slow-drying conditions, keep Boral Plasterboard sheets firm against the adhesive daubs for at least 48 hours. Use temporary blocks fastened through plasterboard to framing members.
- Be sure to fix Boral Plasterboard within thirty minutes of applying adhesive. This will avoid skin forming on the adhesive.

### » Non Fire Rated Ceilings - Plasterboard Installation



### **Screw Fixing Layout**

#### Screw Fixing Layout

| Minimum Fixing Points per Sheet Width |               |  |  |
|---------------------------------------|---------------|--|--|
| Plasterboard Width (mm)               | Single Screws |  |  |
| 900                                   | 4             |  |  |
| 1200                                  | 5             |  |  |
| 1350                                  | 6             |  |  |

#### Notes:

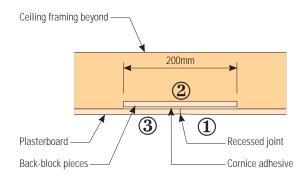
When screw-fixing single layers of Boral Plasterboard sheets:

- Hold plasterboard sheets firmly in place against the framing members while driving in the screws.
- Adjust screw gun correctly so as to drive the screw heads below the surface
  of the sheet without puncturing the face linerboard.
- Press tip of screw firmly into the face linerboard before driving it home.
- Always drive screws with the shank at right angles to the face of the sheets.
- Wherever possible always start from the centre of the sheet toward the outer edges.
- Position screws on adjacent edges opposite each other.

### Non Fire Rated Ceilings - Back-blocking

### **Back-blocking**

Back-blocking is a mandatory fixing requirement where specified in the Australian Standard AS/NZS 2589.1:1997.

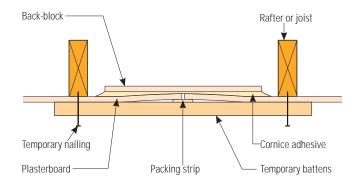

Failure to provide back-blocking installed as per AS/NZS 2589.1:1997 may result in liability for any associated costs relating to maintenance and/or rectification caused by jointing defects.

Back-blocking substantially reduces call-backs, in particular for cracking and peaking joints.

### Recessed Joints in Ceilings

Any area containing three or more recessed joints must be backblocked as follows:

- ① Fix Boral Plasterboard ceiling sheets transverse to framing members.
- ② Place back-block pieces 200mm wide along the full length of fixed sheets edge with cornice adhesive (or back-blocking adhesive). Cornice adhesive to be applied to full face of backblocks using notched spreader to form beads of 6mm x 6mm at approx 20mm centres and at right angles to joint.
- 3) Fix the next sheet immediately after back-blocks are in place.

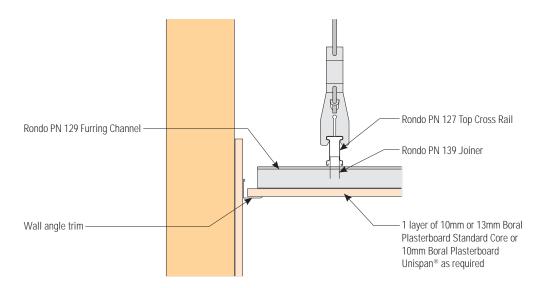



Typical Back-blocking of Recessed Joint

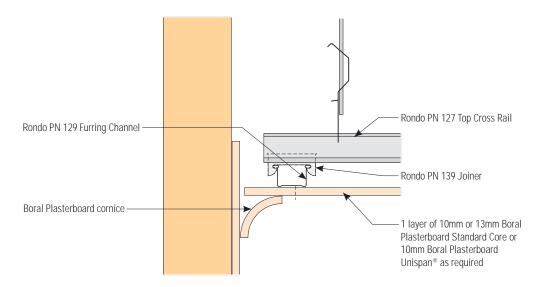
### **Back-blocking Butt Joints**

Back-block butt joints as follows:

- Fix ceiling sheets with ends butted neatly together. The butt joint should fall within 50mm of the mid-span point between framing members.
- Use battens and packers to support and deflect the sheet ends upwards about 2mm.

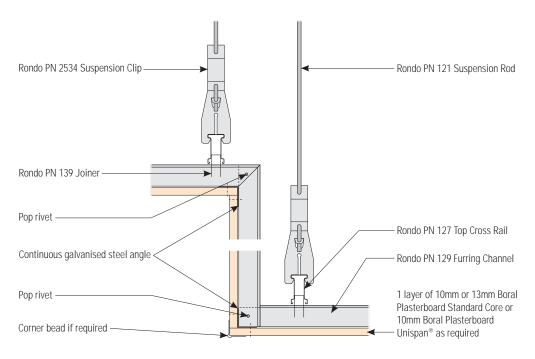



Typical Back-blocking of Butt Joint

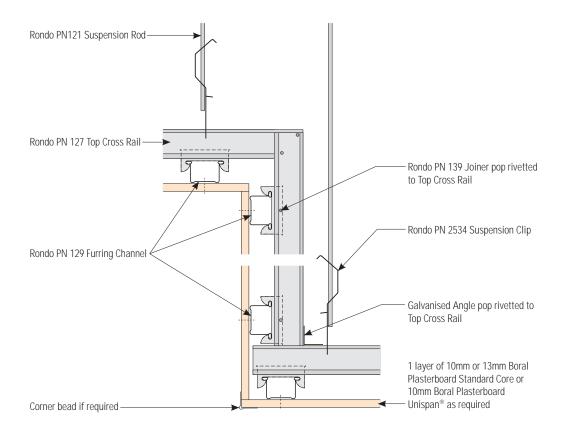

### Back-blocking Dos and Don'ts

- Back-blocking must be installed at the fixing stage.
- Joints must not be set prior to back-blocking.
- Do not use plaster in its advanced setting state or any dry mix compound for back-blocking. Dry or partly dry compounds combined with ceiling temperatures may cause premature dry-out and reduced bond.
- Ensure back-blocking is completely dry prior to the taping process.
- Do not use Stud Adhesive for back-blocking.
- Back-blocking strips should not be tight between framing members.

## Non Fire Rated Ceilings - Perimeter

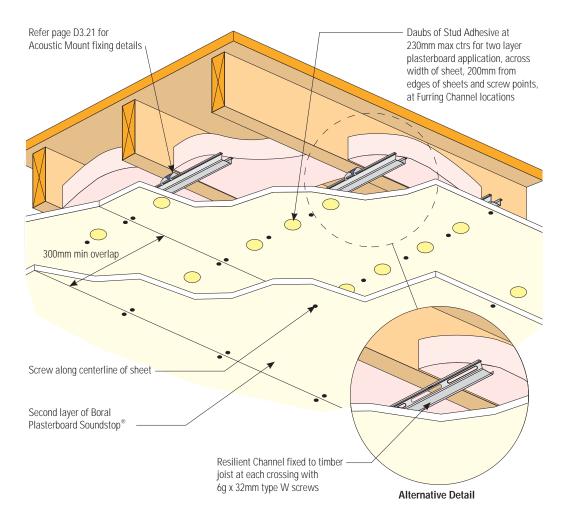



Typical Bulkhead Detail - Section Through Top Cross Rail




Typical Bulkhead Detail - Section Through Furring Channel

# Non Fire Rated Ceilings - Bulkhead




Typical Bulkhead Detail - Section Through Top Cross Rail



Typical Bulkhead Detail - Section Through Furring Channel

### Non Fire Rated Ceilings - Acoustic Details



#### Plasterboard Fixing Layout - Acoustic Ceiling Mount and Resilient Channel

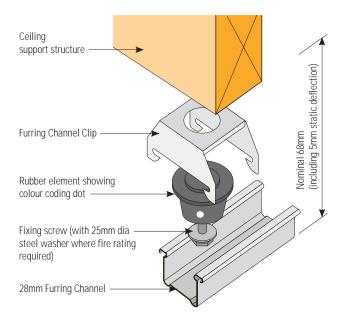
#### Notes:

- For fire rated ceilings refer page D3.3 for Firestop® Plasterboard details.
- Single layer application of Boral Plasterboard Soundstop® screw-fastened to Furring Channels/Resilient Channels as per standard installation details (refer page D3.16).
- First of two layer application, Boral Plasterboard Soundstop® screw-fixed to Furring Channel across sheet width at 300mm maximum centres.

### » Non Fire Rated Ceilings - Acoustic Details

### **Boral Acoustic Ceiling Mount**

### **Direct Fix Application**

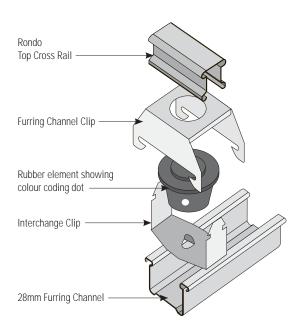

Screws (supplied by others)

- 14 10 x minimum 65mm Type 17 roof screw into timber
- 12 or 14 gauge x minimum 45mm drill point roofing screw into light gauge steel
- "Tapcon" screw into concrete.

### **Mount Assembly**

Assemble the mount as shown in the following illustration.

- 1. Screw fix the mount via the central hole in the rubber element. For fire rated ceilings, a 25mm diameter x 2mm steel washer is required under the fastener head.
- Use a suitable power tool with an appropriate hex driver and tighten the fastener to a point where there is no compression of the rubber element. Check the pull-out capacity of the fastener to ensure correct size is selected.
- 3. Clip furring channel into the Furring Channel Clip.

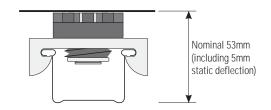



### Suspended Application

#### Mount Assembly

Assemble the mount as shown in the following illustration.

- 1. Clip the Interchange Clip into the Top Cross Rail.
- 2. Clip Furring Channel into the Furring Channel Clip.




#### **Rondo Sound Isolation Mount STWC**

### **Direct Fix Application**

Screw 6g x 60mm Type W Screw into timber

- 6g x 45mm Type S screws for steel BMT up to 0.8mm
- 6g x 45mm Type D screws for steel BMT 0.8mm 2mm
- "Tapcon" screw into concrete.



### » Non Fire Rated Ceilings - Acoustic Details

#### Maximum Spacing of Resilient Channel

| Plasterboard             | Joist Spacing |       |  |
|--------------------------|---------------|-------|--|
| Thickness                | 450mm         | 600mm |  |
| Single Layer Applica     | ation         |       |  |
| 10mm <sup>1</sup>        | 600           | 600   |  |
| 13mm                     | 600           | 600   |  |
| 16mm                     | 600           | 600   |  |
| Double Layer Application |               |       |  |
| 10mm <sup>1</sup>        | 600           | 600   |  |
| 13mm                     | 600           | 600   |  |
| 16mm                     | 600           | 400   |  |

#### Note:

1. Resilient Channel spacing 450mm centres for 10mm Standard Core plasterboard.

#### Maximum Spacing of Boral Acoustic Ceiling Mount/Rondo Sound Isolation Mount STWC

| Disease                   | Joist Spacing | Marian and Caracian of                     | Joist Spacing | Marrian un Curacian af                     |  |
|---------------------------|---------------|--------------------------------------------|---------------|--------------------------------------------|--|
| Plasterboard<br>Thickness | 450mm         | Maximum Spacing of<br>28mm Furring Channel | 600mm         | Maximum Spacing of<br>28mm Furring Channel |  |
| Single Layer Application  |               |                                            |               |                                            |  |
| 10mm <sup>1, 3</sup>      | 1350 (B, R)   | 450                                        | 1200 (B, R)   | 450                                        |  |
| 10mm <sup>2</sup>         | 1350 (B, R)   | 600                                        | 1200 (B, R)   | 600                                        |  |
| 13mm <sup>1, 3, 4</sup>   | 1350 (B, R)   | 600                                        | 1200 (B, R)   | 600                                        |  |
| 16mm <sup>4</sup>         | 1350 (B, R)   | 600                                        | 1200 (B, R)   | 600                                        |  |
| Double Layer Application  |               |                                            |               |                                            |  |
| 10mm <sup>1, 3</sup>      | 1350 (B, R)   | 450                                        | 1200 (B, R)   | 450                                        |  |
| 10mm <sup>2</sup>         | 1350 (B, R)   | 600                                        | 1200 (B, R)   | 600                                        |  |
| 13mm <sup>1</sup>         | 1350 (B, R)   | 600                                        | 1200 (B, R)   | 600                                        |  |
| 13mm <sup>3, 4</sup>      | 1350 (W)      | 600                                        | 1200 (W)      | 600                                        |  |
| 16mm <sup>4</sup>         | 1350 (W)      | 600                                        | 1200 (W)      | 600                                        |  |
| Three Layer Application   |               |                                            |               |                                            |  |
| 16mm <sup>4</sup>         | 900 (W)       | 600                                        | 1200 (W)      | 450                                        |  |
| Four Layer Application    |               |                                            |               |                                            |  |
| 16mm <sup>4</sup>         | 900 (W)       | 450                                        | 600 (W)       | 600                                        |  |

#### Notes:

- 1. Boral Plasterboard Standard Core
- 2. Boral Plasterboard Unispan®
- 3. Boral Plasterboard Soundstop®
- 4. Boral Plasterboard Firestop®, for fire rated ceilings refer page D3.2 for details

- (B). Boral Acoustic Ceiling Mount 'Blue' dot rubber element (maximum load 17kg per mount with 5mm static deflection)
- (W). Boral Acoustic Ceiling Mount 'White' dot rubber element (maximum load 25kg per mount with 5mm static deflection)
- (R). Rondo Sound Isolation Mount STWC (maximum load 16kg per mount).

# **D4** | Reference

### **Old/New Reference Guide**

| Old Ref      | New Ref          | Old Ref              | New Ref      | Old Ref      | New Ref  | Old Ref    | New Ref                      | Old Ref | New Ref   |
|--------------|------------------|----------------------|--------------|--------------|----------|------------|------------------------------|---------|-----------|
| ACWS1        | ST1010           | ASTS15               | TS1616F      | CPS10        | PSC32F   | CS22       | C48F                         | SS9     | S1313     |
| ACWS10       | ST3232F          | ASTS16               | TS1313F      | CPS10        | PSC38F   | CS22       | CF48F                        | SSS1    | SS1313F   |
| ACWS2        | ST1313           | ASTS17               | TS1313F10    | CPS12        | PSC13F   | CS22       | CS48F                        | SSS3    | SS2626F   |
| ACWS2        | ST1313F          | ASTS18               | TS2626F      | CPS12        | PSC25F   | CS4        | CHS48F                       | SSS4    | SS3232F   |
| ACWS3        | ST1616F          | ASTS20               | TS3232F      | CPS12        | PSC32F   | CS5        | CSP3248F                     | STS5    | TS1616F   |
| ACWS4        | ST1326F          | ASW1                 | SH16F        | CPS12        | PSC38F   | CS6        | C64F                         | STS6    | TS2626F   |
| ACWS6        | ST2626F          | ASW2                 | SH32F        | CPS14        | PSC13F   | CS6        | CF64F                        | STS7    | TS3232F   |
| ACWS7        | ST3232F          | ASW3                 | SH1616F      | CPS14        | PSC25F   | CS6        | CS64F                        | SW2     | SH32F     |
| ACWS8        | ST4848F          | ATS1                 | T10          | CPS14        | PSC32F   | DM3        | MF1616F                      | SW3     | SH1616F   |
| ACWS9        | ST3232F          | ATS15                | T2626F       | CPS14        | PSC38F   | DM3        | MF16F                        | SW4     | SH16F     |
| ADM10        | M20.01           | ATS16                | T3232F       | CPS20        | PSC25F10 | DM3        | MF2626F                      | SW5     | SH29F     |
| ADM10        | M20.01CF         | ATS2                 | T13          | CPS20        | PSC50F   | DM3        | MF26F                        | SW6     | SH26F     |
| ADM20        | M90B             | ATS2                 | T16F         | CPS20        | PSC75F   | DM3        | MF3232F                      | SWP1    | WP20      |
| ADM21        | M110B            | ATS20                | TR1616F10    | CPS40        | PSC1313F | DM3        | MF32F                        | SWP10   | WP13A     |
| ADM22        | M110B            | ATS22                | TR2626F      | CPS40        | PSC2626F | DSS1       | D1616F                       | SWP2(1) | WP10      |
| ADM23        | M150B            | ATS23                | TR3232F      | CPS40        | PSC3232F | DSS3       | D2626F                       | SWP2(2) | WP13      |
| ADM24.       | M110B            | ATS24                | 25TP1010     | CPS40        | PSC3939F | DSS5       | D3232F                       | SWP2(3) | WP10A     |
| ADM25        | M150B            | ATS25                | TT2626F      | CPT10        | PTC26F   | DSS6       | D6464F                       | SWP4    | WPB1313   |
| ADM26        | M90B             | ATS26                | 50TP1010     | CPT20        | PTC26F   | EW1        | FC32F                        | SWP5    | WPB2626   |
| ADM27        | M90B             | ATS27                | TT1616F      | CPT20        | PTC13F   | EW2        | FC39F                        | SWP6    | WPL20     |
| ADM28        | M90B             | ATS28                | TT1616F      | CPT20        | PTC39F   | EW2        | FC48F                        | SWP7    | WP2010U   |
| ADM4         | M150C            | ATS29                | TT3232F      | CPT20        | PTC48F   | EW13       | 50IW13                       | SWP8    | SWP1020   |
| ADM8         | M10.01           | ATS30                | TT2929F      | CS1          | PCS25F   | EW13F      | 50IW13F                      | SWP8    | WP13A     |
| ADM9         | M15.01           | ATS4                 | T1010        | CS10         | C48F     | EW13S13    | 50IW13S13                    | SWP9    | TWP1020   |
| ADP3         | VS57F            | ATS5                 | T1313        | CS10         | CF48F    | EWS13FS13F |                              | SWP9    | WP13A     |
| ADP3<br>ADP4 | VS37F<br>VS48F   | ATS5                 | T1313F       | CS10<br>CS11 | CSP3232F | EWS13AS13A | 50IWS13FS13F<br>50IWS13AS13A | TS1     | T3232F    |
| ADP4<br>ADP5 | VS48F+S10        | ATS6                 | T1616F       | CS15         | C32F     | EWF13FS13F | 50IWF13FS13F                 | TS10    | TBV16F    |
| ADP5         | VS46F+T10        | ATS9                 | TR1616F      | CS15         | CF32F    | 0/wall 60  | 0W16WF10                     | TS11    | TBV10     |
| ADSS1        | D1616F           | BPS10                | PSB38F       | CS15         | CR32F    | 0/wall 90  | OW32WF10                     | TS12    | T2626F    |
| ADSS3        | D1616F<br>D2626F | BPS11                | PSBT48F      | CS15         | CS32F    | O/wall 90A | OW32WF16F                    | TS13    | T3232F    |
| ADSS5        | D3232F           | BPS12                | PSBC48F      | _            | CHS32F   |            |                              | TS14    |           |
|              | _                |                      |              | CS16<br>CS17 |          | 0/wall 90B | OW26WF10                     |         | T3232F    |
| ADSS6        | D6464F           | BPS30                | PSB50F       | _            | C16F     | 0/wall 90C | OW16WF26F                    | TS15    | T2626F    |
| ARR1         | COCT10U          | BPS40                | PSB3232F     | CS17         | CF16F    | 0/wall 90D | OW16WF16F                    | TS16    | TBV26F    |
| ARR3         | C13              | BPT20                | PTB13F       | CS17         | CR16F    | 0/wall 90E | OW26WF10                     | TS18    | TT2626F   |
| ARR3         | COC13            | BPT20                | PTB26F       | CS17         | CS16F    | O/wall 90F | OW16WF26F                    | TS19    | 50TP1010  |
| ARR4         | C16F             | BPT20                | PTB39F       | CS18         | C10      | PWS1       | 25SP1010                     | TS2     | T2626F    |
| ARR4         | C16F             | BPT20                | PTB48F       | CS18         | C10U     | PWS3       | 25SP1313A                    | TS20    | TT1616F   |
| ARR4         | COC16F           | CinemaZone<br>Bronze | TR26A10      | CS18         | C13      | PWT1       | 25TP1010                     | TS21    | TT1616F   |
| ARR4         | COD16F           | CinemaZone           |              | CS18         | CF10U    | PWT2       | 25TP1313A                    | TS22    | TT3232F   |
| ARR5         | C32F             | - Gold               | ST2626A      | CS18         | CF13     | PWT4       | 50TP1010                     | TS23    | TT2929F   |
| ARR5         | COC32F           | CinemaZone           | TF39(26)A10  | CS18         | CS10U    | PWT6       | 50TP1313A                    | TS24    | OW16WF10  |
| ARR5         | COD32F           | Gold                 | 11 37(20)/10 | CS18         | CS13     | SR3        | VS57F                        | TS25    | OW32WF10  |
| ASS1         | S1010            | CinemaZone           | TT2626A      | CS19         | C13F     | SR4        | VS48F                        | TS26    | 25TP1010  |
| ASS2         | S1313            | Gold                 |              | CS19         | C16F     | SS1        | S3232F                       | TS28    | 25TP1313A |
| ASS3         | S1616F           | CinemaZone<br>Silver | TF26(13)A10  | CS20         | C26F     | SS10       | S1010                        | TS3     | T1616F    |
| ASS5         | S1326F           | CPC10                | PCC13F       | CS20         | CF26F    | SS2        | S3232F                       | TS4     | T1616F    |
| ASS7         | S2020            | CPC10                | PCC25F       | CS20         | CR26F    | SS3        | S2626F                       | TS5     | TBV16F    |
| ASS8         | S2626F           | CPC20                | PCC13F       | CS20         | CS26F    | SS4        | S1326F                       | TS6     | T32F      |
| ASS9         | S3232F           | CPC20                | PCC25F       | CS21         | C29F     | SS5        | S1616F                       | TS7     | T1616F    |
| ASSS3        | SS2626F          | CPS10                | PSC13F       | CS21         | CF29F    | SS6        | S32F                         | TS8     | T1616F    |
| ASSS4        | SS1616F          |                      |              | - CS21       | CR29F    | SS7        | S1313F                       | TS9     | T2626F    |
| ASSS6        | SS3232F          | CPS10                | PSC25F       | CS21         | CS29F    | SS8        | S3232F                       |         |           |

# **Quick-Find Index**

| System Ref      | Page                                             |
|-----------------|--------------------------------------------------|
| 25SP1010        | B2.21                                            |
| 25SP1010A       | B2.21                                            |
| 25SP1313A       | B2.21                                            |
| 25SP2020        | B2.21                                            |
| 25TP1010        | B2.20                                            |
| 25TP1010A       | B2.20                                            |
| 25TP1313A       | B2.20                                            |
| 25TP2020        | B2.20                                            |
| 50SP1010        | B2.23                                            |
| 50SP1313A       | B2.23                                            |
| 50TP1010        | B2.22                                            |
| 50TP1313A       | B2.22                                            |
| C10<br>C105F    | B3.10,B3.14,B3.18<br>B3.33                       |
| C10A            | B3.1,B3.10,B3.14                                 |
| C10U            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C13             | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C13A            | B3.1,B3.14                                       |
| C13F            | B3.1,B3.10,B3.14,B3.18                           |
| C16F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C20A            | B3.1,B3.10,B3.14,B3.18                           |
| C26F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C29F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C32F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C48F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| C64F            | B3.1,B3.4,B3.10,B3.14,B3.18                      |
| CD26F           | B3.31                                            |
| CD29F           | B3.31                                            |
| CD48F           | B3.31                                            |
| CF10A           | B3.2,B3.15                                       |
| CF10U           | B3.2,B3.5,B3.11,B3.15,B3.19,<br>B3.22,B3.26      |
| CE12            | B3.2,B3.5,B3.11,B3.15,B3.19,                     |
| CF13            | B3.22,B3.26                                      |
| CF13A           | B3.2,B3.15                                       |
| CF13F           | B3.11,B3.15,B3.19, B3.22, B3.26                  |
| CF16F           | B3.2,B3.5,B3.11,B3.15,B3.19,<br>B3.22,B3.26      |
| CF20A           | B3.2,B3.5,B3.15                                  |
| CF26A           | B3.2,B3.15                                       |
| CF26F           | B3.2,B3.5,B3.11,B3.15,B3.19,                     |
| 01 201          | B3.22, B3.26                                     |
| CF29F           | B3.2,B3.5,B3.11,B3.15,B3.19,<br>B3.22, B3.26     |
| 05205           | B3.2,B3.5,B3.11,B3.15,B3.19,                     |
| CF32F           | B3.22, B3.26                                     |
| CF48F           | B3.2,B3.5,B3.11,B3.15,B3.19,                     |
|                 | B3.22, B3.26                                     |
| CF64F<br>CFA10A | B3.2,B3.5,B3.11,B3.15,B3.19<br>B3.12,B3.16,B3.20 |
| CFA10U          | B3.12,B3.10,B3.20<br>B3.23                       |
| CFA13           | B3.23                                            |
| CFA13A          | B3.12,B3.16,B3.20                                |
| CFA13F          | B3.12,B3.20, B3.23                               |
| CFA16F          | B3.12,B3.20, B3.23                               |
| CFA20A          | B3.3,B3.6,B3.12,B3.16,B3.20                      |
| CFA26A          | B3.3,B3.6,B3.12,B3.16,B3.20                      |
| CFA26F          | B3.12,B3.16,B3.20, B3.23                         |
| CFA29F          | B3.12,B3.16,B3.20, B3.23                         |
| CFA32F          | B3.12,B3.16,B3.20, B3.23                         |
| CFA48F          | B3.12,B3.16,B3.20, B3.23                         |
| CFA64F          | B3.12,B3.20                                      |
| CHS32F          | B3.32                                            |
| CHS48F          | B3.32                                            |
|                 |                                                  |

| System Ref             | Page                        |
|------------------------|-----------------------------|
| CHSI48F                | B3.32                       |
| COB10U                 | B3.30                       |
| COB13                  | B3.30                       |
| COB16F                 | B3.30                       |
| COB26F                 | B3.30                       |
| COB32F                 | B3.30                       |
| COBT10U                | B3.30                       |
| COC10U                 | B3.28                       |
| COC13                  | B3.28                       |
| COC16F                 | B3.28                       |
| COC26F                 | B3.28                       |
| COC32F<br>COCT10U      | B3.28                       |
| COD10U                 | B3.28<br>B3.29              |
| COD13                  | B3.29                       |
| COD16F                 | B3.29                       |
| COD26F                 | B3.29                       |
| COD32F                 | B3.29                       |
| CODT10U                | B3.29                       |
| CR10A                  | B3.3,B3.7,B3.13,B3.17,B3.21 |
| CR13A                  | B3.3,B3.7,B3.13,B3.17,B3.21 |
| CR13F                  | B3.13,B3.17,B3.21           |
| CR16F                  | B3.3,B3.7,B3.13,B3.17,B3.21 |
| CR20A                  | B3.3,B3.7,B3.13,B3.17,B3.21 |
| CR26A                  | B3.13                       |
| CR26F                  | B3.7,B3.13,B3.17,B3.21      |
| CR29F                  | B3.7,B3.13,B3.17,B3.21      |
| CR32F                  | B3.7,B3.13,B3.17,B3.21      |
| CS10U                  | B3.8,B3.24,B3.27            |
| CS13                   | B3.8,B3.24,B3.27            |
| CS13A                  | B3.24                       |
| CS13F                  | B3.24, B3.27                |
| CS 16F<br>CS20A        | B3.8, B3.24, B3.27<br>B3.8  |
| CS20U                  | B3.24,B3.27                 |
| CS26                   | B3.24,B3.27                 |
| CS26F                  | B3.8, B3.24, B3.27          |
| CS29F                  | B3.8, B3.24, B3.27          |
| CS32F                  | B3.8, B3.24, B3.27          |
| CS48F                  | B3.8, B3.24, B3.27          |
| CS64F                  | B3.8                        |
| CSA13                  | B3.25                       |
| CSA13F                 | B3.25                       |
| CSA20A                 | B3.9                        |
| CSA16F                 | B3.25                       |
| CSA26F                 | B3.25                       |
| CSA29F                 | B3.25                       |
| CSA32F                 | B3.25                       |
| CSA48F                 | B3.25                       |
| CSP1616F               | B3.31                       |
| CSP2613F<br>CSP3216F10 | B3.31                       |
| CSP3216F10<br>CSP3232F | B3.31<br>B3.31              |
| CSP3232F<br>CSP3248F   | B3.31                       |
| CSP5016F               | B3.31                       |
| D1010A                 | B2.12                       |
| D1313A                 | B2.12                       |
| D1313F                 | B2.12                       |
| D1313F13               | B2.12                       |
| D1616F                 | B2.12                       |
|                        |                             |
| D16F1316F13            | B2.12                       |

| System Ref   | Page  |
|--------------|-------|
| D2626A       | B2.12 |
| D2626F       | B2.12 |
| D3232F       | B2.13 |
| D4848F       | B2.13 |
| D4864F       | B2.13 |
| D6464F       | B2.13 |
| 25IWS13S13   | B2.31 |
| 25IWS13AS13A | B2.31 |
| 25IWS13WS13W | B2.31 |
| 25IWS20S20   | B2.32 |
| 50IW13       | B2.24 |
| 50IW13AS13A  | B2.26 |
| 50IW13F      | B2.24 |
| 50IW13FS13F  | B2.25 |
| 50IW13S13    | B2.25 |
| 50IWF13FS13F | B2.27 |
| 50IWF13AS13A | B2.28 |
| 50IWF13S13   | B2.27 |
| 50IWFR10S13A | B2.26 |
| 50IWS13      | B2.24 |
| 50IWS13AS13A | B2.29 |
| 50IWS13FS13F | B2.30 |
| 50IWS13S13   | B2.29 |
| 50IWS13WS13W | B2.30 |
| FC32F        | B2.48 |
| FC39F        | B2.48 |
| FC48F        | B2.48 |
| FTB32F32F    | B4.12 |
| FTB32F48F    | B4.12 |
| FTO16F16F    | B4.12 |
| FTO26F13F    | B4.12 |
| FTO32F16F10  | B4.12 |
| FTO50F16F    | B4.12 |
| M10          | B2.35 |
| M10.01       | B2.40 |
| M1010        | B2.35 |
| M110B        | B2.46 |
| M125C        | B2.38 |
| M15.01       | B2.41 |
| M15.01CF     | B2.42 |
| M150B        | B2.47 |
| M150C        | B2.39 |
| M20.01       | B2.43 |
| M20.01CF     | B2.44 |
| M90B         | B2.45 |
| MF1616F      | B2.36 |
| MF16F        | B2.36 |
| MF2626F      | B2.36 |
| MF26F        | B2.36 |
| MF3232F      | B2.36 |
| MF32F        | B2.36 |
| OW16WF10     | B2.49 |
| OW16WF16F    | B2.49 |
| OW16WF26F    | B2.49 |
| OW16WFR10A   | B2.49 |
| OW26WF10     | B2.50 |
| OW32WF10     | B2.50 |
| OW32WF16F    | B2.50 |
| PCC13F       | B4.5  |
| PCC25F       | B4.5  |
| PCS25F       | B3.33 |
| PSB16F       | B4.10 |
|              |       |

| System Ref   | Page  |
|--------------|-------|
| SP3245F      | B2.54 |
| SS1010A      | B2.10 |
| SS1313A      | B2.10 |
| SS1313F      | B2.10 |
| SS1313F13    | B2.10 |
| SS1616F      | B2.10 |
| SS16F1316F13 | B2.10 |
| SS2020A      | B2.10 |
| SS2626A      | B2.10 |
| SS2626F      | B2.11 |
| SS3232F      | B2.11 |
| ST1010       | B2.16 |
| ST1313       | B2.16 |
| ST1313A      | B2.16 |
| ST1313F      | B2.17 |
| ST1313F13    | B2.17 |
| ST1326F      | B2.17 |
| ST1616F      | B2.18 |
| ST1616F10    | B2.18 |
| ST16F1016F10 | B2.18 |
| ST2626A      | B2.18 |
| ST2626F      | B2.18 |
| ST3232F      | B2.19 |
|              |       |
| ST4141F      | B2.19 |
| ST4848F      | B2.19 |
| ST6666F      | B2.19 |
| SWP1020      | B4.4  |
| T10          | B2.1  |
| T1010        | B2.2  |
| T1010A       | B2.2  |
| T13          | B2.1  |
| T1313        | B2.2  |
| T1313A       | B2.2  |
| T1313F       | B2.2  |
| T13A         | B2.1  |
| T1616F       | B2.2  |
| TF1616F      | B2.2  |
| T16F         | B2.1  |
| T2020        | B2.3  |
| T2020A       | B2.3  |
| T2626        | B2.3  |
| T2626F       | B2.3  |
| T3232F       | B2.4  |
| T32F         | B2.1  |
| T39F         | B2.1  |
| T48F         | B2.1  |
| TBV10        | B2.51 |
| TBV10A       | B2.51 |
| TBV16F       | B2.51 |
| TBV20A       | B2.51 |
| TBV26A       | B2.51 |
| TBV26F       | B2.51 |
| TBV32F       | B2.51 |
| TF26(13)A10  | B2.3  |
| TF39(26)A10  | B2.4  |
| TR1010A      | B2.2  |
| TR1313A      | B2.2  |
| TR1616F      | B2.3  |
| TR1616F10    | B2.3  |
| TR2626A      | B2.4  |
| TR2626F      | B2.4  |
| TR26A10      | B2.3  |

| System Ref   | Page  |
|--------------|-------|
| TR3232F      | B2.4  |
| TS1010A      | B2.9  |
| TS1313A      | B2.9  |
| TS1313F      | B2.9  |
| TS1313F10    | B2.9  |
| TS1616F      | B2.9  |
| TS2020A      | B2.9  |
| TS2626F      | B2.9  |
| TS3232F      | B2.9  |
| TT1010       | B2.14 |
| TT1313       | B2.14 |
| TT1313A      | B2.14 |
| TT1313F      | B2.14 |
| TT1326F      | B2.14 |
| TT13F1313F13 | B2.14 |
| TT1616F      | B2.14 |
| TT16F1016F10 | B2.14 |
| TT2626A      | B2.14 |
| TT2626F      | B2.14 |
| TT2929F      | B2.14 |
| TT3232F      | B2.15 |
| TWP1020      | B4.4  |
| VS39F        | B2.34 |
| VS48F        | B2.34 |
| VS48F+S10    | B2.34 |
| VS48F+T10    | B2.34 |
| VS57F        | B2.34 |
| WP10         | B4.1  |
| WP10A        | B4.1  |
| WP13         | B4.1  |
| WP13A        | B4.1  |
| WP20         | B4.1  |
| WP2010U      | B4.3  |
| WP20A        | B4.1  |
| WP26         | B4.1  |
| WP26A        | B4.1  |
| WP39F        | B4.1  |
| WP48F        | B4.1  |
| WPB1313      | B4.3  |
| WPB2626      | B4.3  |
| WPL10        | B4.2  |
| WPL10A       | B4.2  |
| WPL13        | B4.2  |
| WPL13A       | B4.2  |
| WPL20        | B4.2  |
| WPL20A       | B4.2  |
| WPL26        | B4.2  |
| WPL26A       | B4.2  |
| WPL32F       | B4.2  |
| WPL39F       | B4.2  |
| WPL48F       | B4.2  |
|              |       |

D4.3

B2.54

SP3232F

### Sustainability

Boral Plasterboard aims to minimise the environmental impact of its operations and to make a positive difference to the environment and communities in which it operates. Plasterboard is manufactured from abundant natural gypsum resources and 100% recycled paper liner.

Lightweight plasterboard construction offers the benefits of low embodied energy, ease of thermal and acoustic upgrading and ease of modifications and repair.

Plasterboard waste can be recycled back into new plasterboard or used as a soil conditioner. Please contact Boral Plasterboard regarding waste collection services available in your region.

### Warranty

Boral Australian Gypsum Limited warrant that the products supplied by it adhere to certain Australian standards as specified in the Boral Plasterboard Product Manual and the relevant Boral product brochures.

Refer to the Boral Plasterboard Home Page www.boral.com.au/plasterboard - "Brochures" section under "Technical Manuals" for a copy of the Boral product warranty.

### **Health and Safety**

For information regarding the safe use of Boral Plasterboard products and accessories please refer to instructions on the product packaging or contact your local Boral Plasterboard Sales Office or TecASSIST\* for a current copy of the Material Safety Data Sheet.

### Technical Enquiries 1800 811 222

TecASSIST\* provides technical advice to builders, architects, contractors, engineers, regulators and home owners throughout Australia.

Our friendly team can offer both practical and design input at all levels of the plasterboard industry. Get your next project off on the right track by contacting TecASSIST\* weekdays 8.30am - 4.30pm AEST on 1800 811 222 or www.boral.com.au/tecassist.

| Sales Enquiries    | 1800 003 377                             |                           |
|--------------------|------------------------------------------|---------------------------|
| ACT                | 7 Barrier Street, Fyshwick 2609          | F: (02) 6280 5816         |
| New South Wales    | 3 Thackeray Street, Camellia 2142        | F: (02) 9638 5557         |
| Northern Territory | Coonawarra Road, Winnellie 0820          | F: (08) 8984 3778         |
| Queensland         | 22 Kirra Street, Pinkenba 4008           | F: (07) 3115 7321         |
| South Australia    | 39 Burleigh Avenue, Woodville North 5012 | F: (08) 7002 6381         |
| Tasmania           | 93 Albert Road, Moonah 7009              | F: (03) 6278 9865         |
| Victoria           | 251 Salmon Street, Port Melbourne 3207   | F: (03) 9214 2192         |
| Western Australia  | 41 Rudderham Drive, North Fremantle 6159 | F: (08) 6226 9833         |
| Export Department  | 251 Salmon Street, Port Melbourne 3207   | F: (03) 9214 2192         |
|                    |                                          | T: (03) 9214 2121         |
|                    |                                          | E: tecexport@boral.com.au |
|                    |                                          |                           |



### www.boral.com.au/selector+

Partiwalle, Firestope, Soundstope and ENVIROe are Registered Trade Marks of Boral Australian Gypsum.

Shaftliner  $\check{}$  is a Trade Mark of Boral Australian Gypsum.

Villaboard® is a Registered Trade Mark of James Hardie Australia Pty Ltd.

FireSound® is a Registered Trade Mark of HB Fuller Australia Pty Ltd.

Tyvek® HomeWrap® is a registered trademark of E.I. duPont de Nemours and Company or related companies.

© Copyright Boral Limited 2011

The technical information contained in this manual was correct at the time of printing.

Building systems and details are, however, subject to change.

To ensure the information you are using is current, Boral recommends you review the latest building information available on the Boral website For further information contact TecASSIST<sup>a</sup> or your nearest Boral Plasterboard Sales Office.